2,502 research outputs found

    Destruction of Opportunistic Pathogens Via Polymer Nanoparticle-Mediated Release of Plant-Based Antimicrobial Payloads

    Get PDF
    The synthesis of antimicrobial thymol/carvacrol‐loaded polythioether nanoparticles (NPs) via a one‐pot, solvent‐free miniemulsion thiol‐ene photopolymerization process is reported. The active antimicrobial agents, thymol and carvacrol, are employed as “solvents” for the thiol‐ene monomer phase in the miniemulsion to enable facile high capacity loading (≈50% w/w), excellent encapsulation efficiencies (\u3e95%), and elimination of all postpolymerization purification processes. The NPs serve as high capacity reservoirs for slow‐release and delivery of thymol/carvacrol‐combination payloads that exhibit inhibitory and bactericidal activity (\u3e99.9% kill efficiency at 24 h) against gram‐positive and gram‐negative bacteria, including both saprophytic (Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 25922) and pathogenic species (E. coli ATCC 43895, Staphylococcus aureus RN6390, and Burkholderia cenocepacia K56‐2). This report is among the first to demonstrate antimicrobial efficacy of essential oil‐loaded nanoparticles against B. cenocepacia – an innately resistant opportunistic pathogen commonly associated with debilitating respiratory infections in cystic fibrosis. Although a model platform, these results point to promising pathways to particle‐based delivery of plant‐derived extracts for a range of antimicrobial applications, including active packaging materials, topical antiseptics, and innovative therapeutics

    Contemporary Family Law, 6th Edition

    Get PDF
    Jessica Dixon Weaver: https://orcid.org/0000-0002-6960-1459https://scholar.smu.edu/facbooks/1071/thumbnail.jp

    Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection

    Get PDF
    Type I IFNs promote cellular responses to viruses, and IFN receptor (IFNAR) signaling regulates the responses of endothelial cells of the blood-brain barrier (BBB) during neurotropic viral infection. However, the role of astrocytes in innate immune responses of the BBB during viral infection of the CNS remains to be fully elucidated. Here, we have demonstrated that type I IFNAR signaling in astrocytes regulates BBB permeability and protects the cerebellum from infection and immunopathology. Mice with astrocyte-specific loss of IFNAR signaling showed decreased survival after West Nile virus infection. Accelerated mortality was not due to expanded viral tropism or increased replication. Rather, viral entry increased specifically in the hindbrain of IFNAR-deficient mice, suggesting that IFNAR signaling critically regulates BBB permeability in this brain region. Pattern recognition receptors and IFN-stimulated genes had higher basal and IFN-induced expression in human and mouse cerebellar astrocytes than did cerebral cortical astrocytes, suggesting that IFNAR signaling has brain region–specific roles in CNS immune responses. Taken together, our data identify cerebellar astrocytes as key responders to viral infection and highlight the existence of distinct innate immune programs in astrocytes from evolutionarily disparate regions of the CNS

    Genomic and neoantigen evolution from primary tumor to first metastases in head and neck squamous cell carcinoma

    Get PDF
    Head and neck cell squamous-cell carcinomas (HNSCC) are a group of common cancers typically associated with tobacco use and human papilloma virus infection. Up to half of all cases will suffer a recurrence after primary treatment. As such, new therapies are needed, including therapies which promote the anti-tumor immune response. Prior work has characterized changes in the mutation burden between primary and recurrent tumors; however, little work has characterized the changes in neoantigen evolution. We characterized genomic and neoantigen changes between 23 paired primary and recurrent HNSCC tumors. Twenty-three biopsies from patients originally diagnosed with locally advanced disease were identified from the Washington University tumor bank. Whole exosome sequencing, RNA-seq, and immunohistochemistry was performed on the primary and recurrent tumors. Within these tumors, we identified 6 genes which have predicted neoantigens in 4 or more patients. Interestingly, patients with neoantigens in these shared genes had increased CD3+ CD8+ T cell infiltration and duration of survival with disease. Within HNSCC tumors examined here, there are neoantigens in shared genes by a subset of patients. The presence of neoantigens in these shared genes may promote an anti-tumor immune response which controls tumor progression

    Genome Sequence of Mycobacterium Phage Waterfoul

    Get PDF
    Waterfoul is a new isolated temperate siphovirus of Mycobacterium smegmatis mc2155. It was identified as a member of the K5 cluster of Mycobacterium phages and has a 61,248-bp genome with 95 predicted genes

    Race/Ethnicity and Retention in Traumatic Brain Injury Outcomes Research: A Traumatic Brain Injury Model Systems National Database Study

    Get PDF
    Objective: To investigate the contribution of race/ethnicity to retention in traumatic brain injury (TBI) research at 1 to 2 years post-injury. Setting: Community. Participants: 5548 Whites, 1347 Blacks, and 790 Hispanics enrolled in the Traumatic Brain Injury Model Systems National Database with dates of injury between October 1, 2002 and March 31, 2013. Design: Retrospective database analysis. Main Measure: Retention, defined as completion of at least one question on the follow-up interview by the person with TBI or a proxy. Results: Retention rates 1-2 years post-TBI were significantly lower for Hispanic (85.2%) than for White (91.8%) or Black participants (90.5%) and depended significantly on history of problem drug or alcohol use. Other variables associated with low retention included older age, lower education, violent cause of injury, and discharge to an institution versus private residence. Conclusions: The findings emphasize the importance of investigating retention rates separately for Blacks and Hispanics rather than combining them or grouping either with other races or ethnicities. The results also suggest the need for implementing procedures to increase retention of Hispanics in longitudinal TBI researc

    A new era of wide-field submillimetre imaging: on-sky performance of SCUBA-2

    Full text link
    SCUBA-2 is the largest submillimetre wide-field bolometric camera ever built. This 43 square arc-minute field-of-view instrument operates at two wavelengths (850 and 450 microns) and has been installed on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. SCUBA-2 has been successfully commissioned and operational for general science since October 2011. This paper presents an overview of the on-sky performance of the instrument during and since commissioning in mid-2011. The on-sky noise characteristics and NEPs of the 450 and 850 micron arrays, with average yields of approximately 3400 bolometers at each wavelength, will be shown. The observing modes of the instrument and the on-sky calibration techniques are described. The culmination of these efforts has resulted in a scientifically powerful mapping camera with sensitivities that allow a square degree of sky to be mapped to 10 mJy/beam rms at 850 micron in 2 hours and 60 mJy/beam rms at 450 micron in 5 hours in the best weather.Comment: 18 pages, 15 figures.SPIE Conference series 8452, Millimetre, Submillimetre and Far-infrared Detectors and Instrumentation for Astronomy VI 201

    Full-Shell X-Ray Optics Development at NASA Marshall Space Flight Center

    Get PDF
    NASAs Marshall Space Flight Center (MSFC) maintains an active research program toward the development of high-resolution, lightweight, grazing-incidence x-ray optics to serve the needs of future x-ray astronomy missions such as Lynx. MSFC development efforts include both direct fabrication (diamond turning and deterministic computer-controlled polishing) of mirror shells and replication of mirror shells (from figured, polished mandrels). Both techniques produce full-circumference monolithic (primary + secondary) shells that share the advantages of inherent stability, ease of assembly, and low production cost. However, to achieve high-angular resolution, MSFC is exploring significant technology advances needed to control sources of figure error including fabrication- and coating-induced stresses and mounting-induced distortions
    corecore