7 research outputs found

    Nuclear Cryogenic Propulsion Stage Affordable Development Strategy

    Get PDF
    The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach

    Affordable Development and Qualification Strategy for Nuclear Thermal Propulsion

    Get PDF
    A number of recent assessments have confirmed the results of several earlier studies that Nuclear Thermal Propulsion (NTP) is a leading technology for human exploration of Mars. It is generally acknowledged that NTP provides the best prospects for the transportation of humans to Mars in the 2030's. Its high Isp coupled with the high thrusts achievable, allow reasonable trip times, thereby alleviating concerns about space radiation and "claustrophobia" effects. NASA has embarked on the latest phase of the development of NTP systems, and is adopting an affordable approach in response to the pressure of the times. The affordable strategy is built on maximizing the use of the large NTP technology base developed in the 1950's and 60's. The fact that the NTP engines were actually demonstrated to work as planned, is a great risk reduction feature in its development. The strategy utilizes non-nuclear testing to the fullest extent possible, and uses focused nuclear tests for the essential qualification and certification tests. The perceived cost risk of conducting the ground tests is being addressed by considering novel testing approaches. This includes the use of boreholes to contain radioactive effluents, and use of fuel with very high retention capability for fission products. The use of prototype flight tests is being considered as final steps in the development prior to undertaking human flight missions. In addition to the technical issues, plans are being prepared to address the institutional and political issues that need to be considered in this major venture. While the development and deployment of NTP system is not expected to be cheap, the value of the system will be very high, and amortized over the many missions that it enables and enhances, the imputed costs will be very reasonable. Using the approach outlined, NASA and its partners, currently the DOE, and subsequently industry, have a good chance of creating a sustained development program leading to human missions to Mars within the next few decades

    A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    Get PDF
    Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test). Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Excellent results have also been obtained by Russia. Ternary carbide fuels developed in Russia may have the potential for providing even higher specific impulses
    corecore