11,554 research outputs found

    Room-Temperature Alternative to the Arbuzov Reaction: The Reductive Deoxygenation of Acyl Phosphonates

    Get PDF
    The reductive deoxygenation of acyl phosphonates using a Wolff−Kishner-like sequence is described. This transformation allows direct access to alkyl phosphonates from acyl phosphonates at room temperature. The method can be combined with acyl phosphonate synthesis into a one pot, four-step procedure for the conversion of carboxylic acids into alkyl phosphonates. The methodology works well for a variety of aliphatic acids and shows a functional group tolerance similar to that of other hydrazone-forming reactions

    WR146 - observing the OB-type companion

    Full text link
    We present new radio and optical observations of the colliding-wind system WR146 aimed at understanding the nature of the companion to the Wolf-Rayet star and the collision of their winds. The radio observations reveal emission from three components: the WR stellar wind, the non-thermal wind-wind interaction region and, for the first time, the stellar wind of the OB companion. This provides the unique possibility of determining the mass-loss rate and terminal wind velocity ratios of the two winds, independent of distance. Respectively, these ratios are determined to be 0.20+/-0.06 and 0.56+/-0.17 for the OB-companion star relative to the WR star. A new optical spectrum indicates that the system is more luminous than had been believed previously. We deduce that the ``companion'' cannot be a single, low luminosity O8 star as previously suggested, but is either a high luminosity O8 star, or possibly an O8+WC binary system.Comment: 9 pages, 5 figures, ftp://fto.drao.nrc.ca/pub/smd/wr146/accepted.ps.gz To be published in Monthly Notices of the Royal Astronomical Societ

    Particle propagation channels in the solar wind

    Get PDF
    The intensities of low energy solar-interplanetary electrons and ions at 1 AU occasionally change in a square wave manner. The changes may be increases or decreases and they typically have durations of from one hour to a few hours. In some cases these channels are bounded by discontinuities in the interplanetary field and the plasma properties differ from the surrounding solar wind. In one case solar flare particles were confined to a channel of width 3 x 10 to the 6th km at Earth. At the Sun this dimension extrapolates to about 12,000 km, a size comparable to small flares

    The Effects of Federalism and Privatization on Productivity in Chinese Firms

    Get PDF
    This study offers empirical evidence about how the structure of government and private ownership affects productivity in Chinese firms. It uses the microdata of China's most recent decennial industrial census, covering all of the 23,000 large and medium industrial firms operating in China during 1995. The results show that government decentralization – 'federalism' – plays an important role in improving the performance of not just collective firms, but also state-owned and mixed public/private ownership firms. This result is strongly confirmatory of much of the recent theoretical work on transition economies that posits a key role for government in the efficient operation of markets. Privatization makes a big difference in performance for firms administered at the federal level, especially state-owned enterprises. Private ownership also makes a large difference for wholly foreign-owned firms, nearly all located in special districts. In local jurisdictions, however, there is little difference in productivity across the various nonstate ownership types, supporting the argument that the regulatory environment played a critical role in successful business performance.china productivity microdata ownership decentralization

    Non-thermal X-ray and Gamma-ray Emission from the Colliding Wind Binary WR140

    Get PDF
    WR140 is the archetype long-period colliding wind binary (CWB) system, and is well known for dramatic variations in its synchrotron emission during its 7.9-yr, highly eccentric orbit. This emission is thought to arise from relativistic electrons accelerated at the global shocks bounding the wind-collision region (WCR). The presence of non-thermal electrons and ions should also give rise to X-ray and gamma-ray emission from several separate mechanisms, including inverse-Compton cooling, relativistic bremsstrahlung, and pion decay. We describe new calculations of this emission and make some preliminary predictions for the new generation of gamma-ray observatories. We determine that WR140 will likely require several Megaseconds of observation before detection with INTEGRAL, but should be a reasonably strong source for GLAST.Comment: 4 pages, 1 figure, contribution to "Massive Stars and High-Energy Emission in OB Associations"; JENAM 2005, held in Liege (Belgium

    Winds in Collision: high-energy particles in massive binary systems

    Full text link
    High-resolution radio observations have revealed that non-thermal radio emission in WR stars arises where the stellar wind of the WR star collides with that of a binary companion. These colliding-wind binary (CWB) systems offer an important laboratory for investigating the underlying physics of particle acceleration. Hydrodynamic models of the binary stellar winds and the wind-collision region (WCR) that account for the evolution of the electron energy spectrum, largely due to inverse Compton cooling, are now available. Radiometry and imaging obtained with the VLA, MERLIN, EVN and VLBA provide essential constraints to these models. Models of the radio emission from WR146 and WR147 are shown, though these very wide systems do not have defined orbits and hence lack a number of important model parameters. Multi-epoch VLBI imaging of the archetype WR+O star binary WR140 through a part of its 7.9-year orbit has been used to define the orbit inclination, distance and the luminosity of the companion star to enable the best constraints for any radio emitting CWB system. Models of the spatial distribution of relativistic electrons and ions, and the magnetic energy density are used to model the radio emission, and also to predict the high energy emission at X-ray and gamma-ray energies. It is clear that high-energy facilities e.g. GLAST and VERITAS, will be important for constraining particle acceleration parameters such as the spectral index of the energy spectrum and the acceleration efficiency of both ions and electrons, and in turn, identify unique models for the radio spectra. This will be especially important in future attempts to model the spectra of WR140 throughout its complete orbit. A WCR origin for the synchrotron emission in O-stars, the progenitors of WR stars, is illustrated by observations of Cyg OB2 No. 9.Comment: Invited review at the 8th EVN Symposium, Torun September 26-29, 2006. 11 pages, 12 figure
    corecore