214 research outputs found

    Syndecan-1 promotes the angiogenic phenotype of multiple myeloma endothelial cells

    Get PDF
    Angiogenesis is considered a hallmark of multiple myeloma (MM) progression. In the present study, we evaluated the morphological and functional features of endothelial cells (ECs) derived from bone marrow (BM) of patients affected by MM (MMECs). We found that MMECs compared with normal BM ECs (BMECs) showed increased expression of syndecan-1. Silencing of syndecan-1 expression by RNA interference technique decreased in vitro EC survival, proliferation and organization in capillary-like structures. In vivo, in severe combined immunodeficient mice, syndecan-1 silencing inhibited MMEC organization into patent vessels. When overexpressed in human umbilical vein ECs and BMECs, syndecan-1 induced in vitro and in vivo angiogenic effects. Flow-cytometric analysis of MMECs silenced for syndecan-1 expression indicated a decreased membrane expression of vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2). Immunoprecipitation and confocal analysis showed colocalization of VEGFR-2 with syndecan-1. Absence of nuclear translocation of VEGFR-2 in syndecan-1-knockdown cells together with the shift from perinuclear localization to recycling compartments suggest a role of syndecan-1 in modulation of VEGFR-2 localization. This correlated with an in vitro decreased VEGF-induced invasion and motility. These results suggest that syndecan-1 may contribute to the highly angiogenic phenotype of MMECs by promoting EC proliferation, survival and modulating VEGF–VEGFR-2 signalling

    Moving forward during major goal blockage: situational goal adjustment in women facing infertility

    Get PDF
    Individuals confronting chronic medical conditions often face profound challenges to cherished life goals. The primary aim of this study was to examine the associations of goal adjustment with psychological adjustment in the context of infertility. At study entry (T1; n = 97) and 6 months later (T2; n = 47), women in fertility treatment completed measures of goal blockage, goal adjustment ability, and psychological adjustment. At T1, greater perceived and actual goal blockage were related to negative psychological adjustment. Ability to disengage from the goal of biological parenthood was associated with less infertility-specific thought intrusion, whereas engagement with other goals was related to fewer depressive symptoms and greater positive states of mind. Greater general goal engagement was protective against the negative relationships between low goal disengagement and the dependent variables. Promoting letting go of the unattainable and investing in the possible may be a useful intervention to foster well-being among individuals experiencing profound goal blockage

    Soluble perlecan domain i enhances vascular endothelial growth factor-165 activity and receptor phosphorylation in human bone marrow endothelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immobilized recombinant perlecan domain I (PlnDI) binds and modulates the activity of heparin-binding growth factors, <it>in vitro</it>. However, activities for PlnDI, in solution, have not been reported. In this study, we assessed the ability of soluble forms to modulate vascular endothelial growth factor-165 (VEGF<sub>165</sub>) enhanced capillary tube-like formation, and VEGF receptor-2 phosphorylation of human bone marrow endothelial cells, <it>in vitro</it>.</p> <p>Results</p> <p>In solution, PlnDI binds VEGF<sub>165 </sub>in a heparan sulfate and pH dependent manner. Capillary tube-like formation is enhanced by exogenous PlnDI; however, PlnDI/VEGF<sub>165 </sub>mixtures combine to enhance formation beyond that stimulated by either PlnDI or VEGF<sub>165 </sub>alone. PlnDI also stimulates VEGF receptor-2 phosphorylation, and mixtures of PlnDI/VEGF<sub>165 </sub>reduce the time required for peak VEGF receptor-2 phosphorylation (Tyr-951), and increase Akt phosphorylation. PlnDI binds both immobilized neuropilin-1 and VEGF receptor-2, but has a greater affinity for neuropilin-1. PlnDI binding to neuropilin-1, but not to VEGF receptor-2 is dependent upon the heparan sulfate chains adorning PlnDI. Interestingly, the presence of VEGF<sub>165 </sub>but not VEGF<sub>121 </sub>significantly enhances PlnDI binding to Neuropilin-1 and VEGF receptor-2.</p> <p>Conclusions</p> <p>Our observations suggest soluble forms of PlnDI are biologically active. Moreover, PlnDI heparan sulfate chains alone or together with VEGF<sub>165 </sub>can enhance VEGFR-2 signaling and angiogenic events, <it>in vitro</it>. We propose PlnDI liberated during basement membrane or extracellular matrix turnover may have similar activities, <it>in vivo</it>.</p

    Caveolin-1 Plays a Crucial Role in Inhibiting Neuronal Differentiation of Neural Stem/Progenitor Cells via VEGF Signaling-Dependent Pathway

    Get PDF
    In the present study, we aim to elucidate the roles of caveolin-1(Cav-1), a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs). In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels of vascular endothelial growth factor (VEGF) and the more abundant formation of newborn neurons than wild type mice. We then studied the potential mechanisms of Cav-1 in modulating VEGF signaling and neuronal differentiation in isolated cultured NPCs under normoxic and hypoxic conditions. Hypoxic embryonic rat NPCs were exposed to 1% O2 for 24 h and then switched to 21% O2 for 1, 3, 7 and 14 days whereas normoxic NPCs were continuously cultured with 21% O2. Compared with normoxic NPCs, hypoxic NPCs had down-regulated expression of Cav-1 and up-regulated VEGF expression and p44/42MAPK phosphorylation, and enhanced neuronal differentiation. We further studied the roles of Cav-1 in inhibiting neuronal differentiation by using Cav-1 scaffolding domain peptide and Cav-1-specific small interfering RNA. In both normoxic and hypoxic NPCs, Cav-1 peptide markedly down-regulated the expressions of VEGF and flk1, decreased the phosphorylations of p44/42MAPK, Akt and Stat3, and inhibited neuronal differentiation, whereas the knockdown of Cav-1 promoted the expression of VEGF, phosphorylations of p44/42MAPK, Akt and Stat3, and stimulated neuronal differentiation. Moreover, the enhanced phosphorylations of p44/42MAPK, Akt and Stat3, and neuronal differentiation were abolished by co-treatment of VEGF inhibitor V1. These results provide strong evidence to prove that Cav-1 can inhibit neuronal differentiation via down-regulations of VEGF, p44/42MAPK, Akt and Stat3 signaling pathways, and that VEGF signaling is a crucial target of Cav-1. The hypoxia-induced down-regulation of Cav-1 contributes to enhanced neuronal differentiation in NPCs

    Related to Anxiety: Arbitrarily Applicable Relational Responding and Experimental Psychopathology Research on Fear and Avoidance

    Get PDF
    Humans have an unparalleled ability to engage in arbitrarily applicable relational responding (AARR). One of the consequences of this ability to spontaneously combine and relate events from the past, present, and future may, in fact, be a propensity to suffer. For instance, maladaptive fear and avoidance of remote or derived threats may actually perpetuate anxiety. In this narrative review, we consider contemporary AARR research on fear and avoidance as it relates to anxiety. We first describe laboratory-based research on the emergent spread of fear- and avoidance-eliciting functions in humans. Next, we consider the validity of AARR research on fear and avoidance and address the therapeutic implications of the work. Finally, we outline challenges and opportunities for a greater synthesis between behavior analysis research on AARR and experimental psychopathology
    corecore