967 research outputs found

    Low-Density Water Structure Observed in a Nanosegregated Cryoprotectant Solution at Low Temperatures from 285 to 238 K

    Get PDF
    The structure of liquid water is defined by its molecular association through hydrogen bonding. Two different structures have been proposed for liquid water at low temperatures: low-density liquid (LDL) and high-density liquid (HDL) water. Here, we demonstrate a platform that can be exploited to experimentally probe the structure of liquid water in equilibrium at temperatures down to 238 K. We make use of a cryoprotectant molecule, glycerol, that, when mixed with water, lowers the freezing temperature of the solution nonmonotonically with glycerol concentration. We use a combination of neutron diffraction measurements and computational modeling to examine the structure of water in glycerol–water liquid mixtures at low temperatures from 285 to 238 K. We confirm that the mixtures are nanosegregated into regions of glycerol-rich and water-rich clusters. We examine the water structure and reveal that, at the temperatures studied here, water forms a low-density water structure that is more tetrahedral than the structure at room temperature. We postulate that nanosegregation allows water to form a low-density structure that is protected by an extensive and encapsulating glycerol interface

    Energy of Isolated Systems at Retarded Times as the Null Limit of Quasilocal Energy

    Get PDF
    We define the energy of a perfectly isolated system at a given retarded time as the suitable null limit of the quasilocal energy EE. The result coincides with the Bondi-Sachs mass. Our EE is the lapse-unity shift-zero boundary value of the gravitational Hamiltonian appropriate for the partial system Σ\Sigma contained within a finite topologically spherical boundary B=ΣB = \partial \Sigma. Moreover, we show that with an arbitrary lapse and zero shift the same null limit of the Hamiltonian defines a physically meaningful element in the space dual to supertranslations. This result is specialized to yield an expression for the full Bondi-Sachs four-momentum in terms of Hamiltonian values.Comment: REVTEX, 16 pages, 1 figur

    Angular momentum and an invariant quasilocal energy in general relativity

    Full text link
    Owing to its transformation property under local boosts, the Brown-York quasilocal energy surface density is the analogue of E in the special relativity formula: E^2-p^2=m^2. In this paper I will motivate the general relativistic version of this formula, and thereby arrive at a geometrically natural definition of an `invariant quasilocal energy', or IQE. In analogy with the invariant mass m, the IQE is invariant under local boosts of the set of observers on a given two-surface S in spacetime. A reference energy subtraction procedure is required, but in contrast to the Brown-York procedure, S is isometrically embedded into a four-dimensional reference spacetime. This virtually eliminates the embeddability problem inherent in the use of a three-dimensional reference space, but introduces a new one: such embeddings are not unique, leading to an ambiguity in the reference IQE. However, in this codimension-two setting there are two curvatures associated with S: the curvatures of its tangent and normal bundles. Taking advantage of this fact, I will suggest a possible way to resolve the embedding ambiguity, which at the same time will be seen to incorporate angular momentum into the energy at the quasilocal level. I will analyze the IQE in the following cases: both the spatial and future null infinity limits of a large sphere in asymptotically flat spacetimes; a small sphere shrinking toward a point along either spatial or null directions; and finally, in asymptotically anti-de Sitter spacetimes. The last case reveals a striking similarity between the reference IQE and a certain counterterm energy recently proposed in the context of the conjectured AdS/CFT correspondence.Comment: 54 pages LaTeX, no figures, includes brief summary of results, submitted to Physical Review

    Gravitational Energy in Spherical Symmetry

    Get PDF
    Various properties of the Misner-Sharp spherically symmetric gravitational energy E are established or reviewed. In the Newtonian limit of a perfect fluid, E yields the Newtonian mass to leading order and the Newtonian kinetic and potential energy to the next order. For test particles, the corresponding Hajicek energy is conserved and has the behaviour appropriate to energy in the Newtonian and special-relativistic limits. In the small-sphere limit, the leading term in E is the product of volume and the energy density of the matter. In vacuo, E reduces to the Schwarzschild energy. At null and spatial infinity, E reduces to the Bondi-Sachs and Arnowitt-Deser-Misner energies respectively. The conserved Kodama current has charge E. A sphere is trapped if E>r/2, marginal if E=r/2 and untrapped if E<r/2, where r is the areal radius. A central singularity is spatial and trapped if E>0, and temporal and untrapped if E<0. On an untrapped sphere, E is non-decreasing in any outgoing spatial or null direction, assuming the dominant energy condition. It follows that E>=0 on an untrapped spatial hypersurface with regular centre, and E>=r_0/2 on an untrapped spatial hypersurface bounded at the inward end by a marginal sphere of radius r_0. All these inequalities extend to the asymptotic energies, recovering the Bondi-Sachs energy loss and the positivity of the asymptotic energies, as well as proving the conjectured Penrose inequality for black or white holes. Implications for the cosmic censorship hypothesis and for general definitions of gravitational energy are discussed.Comment: 23 pages. Belatedly replaced with substantially extended published versio

    Quasi-Local Gravitational Energy

    Full text link
    A dynamically preferred quasi-local definition of gravitational energy is given in terms of the Hamiltonian of a `2+2' formulation of general relativity. The energy is well-defined for any compact orientable spatial 2-surface, and depends on the fundamental forms only. The energy is zero for any surface in flat spacetime, and reduces to the Hawking mass in the absence of shear and twist. For asymptotically flat spacetimes, the energy tends to the Bondi mass at null infinity and the \ADM mass at spatial infinity, taking the limit along a foliation parametrised by area radius. The energy is calculated for the Schwarzschild, Reissner-Nordstr\"om and Robertson-Walker solutions, and for plane waves and colliding plane waves. Energy inequalities are discussed, and for static black holes the irreducible mass is obtained on the horizon. Criteria for an adequate definition of quasi-local energy are discussed.Comment: 16 page

    Behavior of Quasilocal Mass Under Conformal Transformations

    Get PDF
    We show that in a generic scalar-tensor theory of gravity, the ``referenced'' quasilocal mass of a spatially bounded region in a classical solution is invariant under conformal transformations of the spacetime metric. We first extend the Brown-York quasilocal formalism to such theories to obtain the ``unreferenced'' quasilocal mass and prove it to be conformally invariant. The appropriate reference term in this case is defined by generalizing the Hawking-Horowitz prescription, which was originally proposed for general relativity. For such a choice of reference term, the referenced quasilocal mass for a general spacetime solution is obtained. This expression is shown to be a conformal invariant provided the conformal factor is a monotonic function of the scalar field. We apply this expression to the case of static spherically symmetric solutions with arbitrary asymptotics to obtain the referenced quasilocal mass of such solutions. Finally, we demonstrate the conformal invariance of our quasilocal mass formula by applying it to specific cases of four-dimensional charged black hole spacetimes, of both the asymptotically flat and non-flat kinds, in conformally related theories.Comment: LaTeX, 31 pages, one ps figur

    Two dimensional Sen connections in general relativity

    Full text link
    The two dimensional version of the Sen connection for spinors and tensors on spacelike 2-surfaces is constructed. A complex metric γAB\gamma_{AB} on the spin spaces is found which characterizes both the algebraic and extrinsic geometrical properties of the 2-surface $\$ . The curvature of the two dimensional Sen operator Δe\Delta_e is the pull back to $\$ of the anti-self-dual part of the spacetime curvature while its `torsion' is a boost gauge invariant expression of the extrinsic curvatures of $\$ . The difference of the 2 dimensional Sen and the induced spin connections is the anti-self-dual part of the `torsion'. The irreducible parts of Δe\Delta_e are shown to be the familiar 2-surface twistor and the Weyl--Sen--Witten operators. Two Sen--Witten type identities are derived, the first is an identity between the 2 dimensional twistor and the Weyl--Sen--Witten operators and the integrand of Penrose's charge integral, while the second contains the `torsion' as well. For spinor fields satisfying the 2-surface twistor equation the first reduces to Tod's formula for the kinematical twistor.Comment: 14 pages, Plain Tex, no report numbe

    Two-spinor Formulation of First Order Gravity coupled to Dirac Fields

    Get PDF
    Two-spinor formalism for Einstein Lagrangian is developed. The gravitational field is regarded as a composite object derived from soldering forms. Our formalism is geometrically and globally well-defined and may be used in virtually any 4m-dimensional manifold with arbitrary signature as well as without any stringent topological requirement on space-time, such as parallelizability. Interactions and feedbacks between gravity and spinor fields are considered. As is well known, the Hilbert-Einstein Lagrangian is second order also when expressed in terms of soldering forms. A covariant splitting is then analysed leading to a first order Lagrangian which is recognized to play a fundamental role in the theory of conserved quantities. The splitting and thence the first order Lagrangian depend on a reference spin connection which is physically interpreted as setting the zero level for conserved quantities. A complete and detailed treatment of conserved quantities is then presented.Comment: 16 pages, Plain TE

    Measurements of Deuteron Photodisintegration up to 4.0 GeV

    Get PDF
    The first measurements of the differential cross section for the d(gamma,p)n reaction up to 4.0 GeV were performed at Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. We report the cross sections at the proton center-of-mass angles of 36, 52, 69 and 89 degrees. These results are in reasonable agreement with previous measurements at lower energy. The 89 and 69 degree data show constituent-counting-rule behavior up to 4.0 GeV photon energy. The 36 and 52 degree data disagree with the counting rule behavior. The quantum chromodynamics (QCD) model of nuclear reactions involving reduced amplitudes disagrees with the present data.Comment: 5 pages (REVTeX), 1 figure (postscript
    corecore