22 research outputs found

    Modeling dynamic interactions between pre-exposure prophylaxis interventions & treatment programs: predicting HIV transmission & resistance

    Get PDF
    Clinical trials have recently demonstrated the effectiveness of Pre-Exposure Prophylaxis (PrEP) in preventing HIV infection. Consequently, PrEP may soon be used for epidemic control. We model the dynamic interactions that will occur between treatment programs and potential PrEP interventions in resource-constrained countries. We determine the consequences for HIV transmission and drug resistance. We use response hypersurface modeling to predict the effect of PrEP on decreasing transmission as a function of effectiveness, adherence and coverage. We predict PrEP will increase need for second-line therapies (SLT) for treatment-naïve individuals, but could significantly decrease need for SLT for treatment-experienced individuals. If the rollout of PrEP is carefully planned it could increase the sustainability of treatment programs. If not, need for SLT could increase and the sustainability of treatment programs could be compromised. Our results show the optimal strategy for rolling out PrEP in resource-constrained countries is to begin around the “worst” treatment programs

    Factors Influencing the Emergence and Spread of HIV Drug Resistance Arising from Rollout of Antiretroviral Pre-Exposure Prophylaxis (PrEP)

    Get PDF
    Background: The potential for emergence and spread of HIV drug resistance from rollout of antiretroviral (ARV) pre-exposure prophylaxis (PrEP) is an important public health concern. We investigated determinants of HIV drug resistance prevalence after PrEP implementation through mathematical modeling. Methodology: A model incorporating heterogeneity in age, gender, sexual activity, HIV infection status, stage of disease, PrEP coverage/discontinuation, and HIV drug susceptibility, was designed to simulate the impact of PrEP on HIV prevention and drug resistance in a sub-Saharan epidemic. Principal Findings: Analyses suggest that the prevalence of HIV drug resistance is influenced most by the extent and duration of inadvertent PrEP use in individuals already infected with HIV. Other key factors affecting drug resistance prevalence include the persistence time of transmitted resistance and the duration of inadvertent PrEP use in individuals who become infected on PrEP. From uncertainty analysis, the median overall prevalence of drug resistance at 10 years was predicted to be 9.2% (interquartile range 6.9%-12.2%). An optimistic scenario of 75% PrEP efficacy, 60% coverage of the susceptible population, and 5% inadvertent PrEP use predicts a rise in HIV drug resistance prevalence to only 2.5% after 10 years. By contrast, in a pessimistic scenario of 25% PrEP efficacy, 15% population coverage, and 25% inadvertent PrEP use, resistance prevalence increased to over 40%. Conclusions: Inadvertent PrEP use in previously-infected individuals is the major determinant of HIV drug resistance prevalence arising from PrEP. Both the rate and duration of inadvertent PrEP use are key factors. PrEP rollout programs should include routine monitoring of HIV infection status to limit the spread of drug resistance. © 2011 Abbas et al

    A Template-Dependent Dislocation Mechanism Potentiates K65R Reverse Transcriptase Mutation Development in Subtype C Variants of HIV-1

    Get PDF
    Numerous studies have suggested that the K65R reverse transcriptase (RT) mutation develops more readily in subtype C than subtype B HIV-1. We recently showed that this discrepancy lies partly in the subtype C template coding sequence that predisposes RT to pause at the site of K65R mutagenesis. However, the mechanism underlying this observation and the elevated rates of K65R development remained unknown. Here, we report that DNA synthesis performed with subtype C templates consistently produced more K65R-containing transcripts than subtype B templates, regardless of the subtype-origin of the RT enzymes employed. These findings confirm that the mechanism involved is template-specific and RT-independent. In addition, a pattern of DNA synthesis characteristic of site-specific primer/template slippage and dislocation was only observed with the subtype C sequence. Analysis of RNA secondary structure suggested that the latter was unlikely to impact on K65R development between subtypes and that Streisinger strand slippage during DNA synthesis at the homopolymeric nucleotide stretch of the subtype C K65 region might occur, resulting in misalignment of the primer and template. Consequently, slippage would lead to a deletion of the middle adenine of codon K65 and the production of a -1 frameshift mutation, which upon dislocation and realignment of the primer and template, would lead to development of the K65R mutation. These findings provide additional mechanistic evidence for the facilitated development of the K65R mutation in subtype C HIV-1

    Potential Impact of Antiretroviral Chemoprophylaxis on HIV-1 Transmission in Resource-Limited Settings

    Get PDF
    Background. The potential impact of pre-exposure chemoprophylaxis (PrEP) an heterosexual transmission of HIV-1 infection in resource-limited settings is uncertain. Methodology/Principle Findings. A deterministic mathematical model was used to simulate the effects of antiretroval PreP on an HIV-1 epidemic in sub-Saharan Africa under different scenarios (optimistic neutral and pessimistic) both with and without sexual disinhibition. Sensitivity analyses were used to evaluate the effect of uncertainty in input parameters on model output and included calculation of partial rank correlations and standardized rank regressions. In the scenario without sexual disinhibition after PrEP initiation, key parameters influencing infections prevented were effectiveness of PrEP (partial rank correlation coefficient (PRCC) = 0.94), PrEP discontinuation rate (PRCC=-0.94), level of coverage (PRCC=0.92), and time to achieve target coverage (PRCC=-082). In the scenario with sexual disinhibition, PrEP effectiveness and the extent of sexual disinhibition had the greatest impact on prevention. An optimistic scenario of PrEP with 90% effectiveness and 75% coverage of the general population predicted a 74% decline in cumulative HIV-1 infections after 10 years, and a 28.8% decline with PrEP targeted to the highest risk groups (16% of the population). Even With a 100% increase in at-risk behavior from sexual disinhibition, a beneficial effect (23.4%-62.7% decrease in infections) was seen with 90% effective PrEP across a broad range of coverage (25%-75%). Similar disinhibition led to a rise in infections with lower effectiveness of PrEP (≤50%). Conclusions/Significance. Mathematical modeling supports the potential public health benefit of PrEP. Approximately 2.7 to 3.2 million new HIV-1 infections could be averaged in southern sub-Saharan Africa over 10 years by targeting PrEP (having 90% effectiveness) to those at highest behavioral risk and by preventing sexual disinhibition. This benefit could be lost, however, by sexual disinhibition and by high PrEP discontinuation, especially with lower PrEP effectiveness (≤:50%). © 2007 Abbas et al

    Evolving uses of oral reverse transcriptase inhibitors in the HIV-1 epidemic: From treatment to prevention

    Get PDF
    The HIV epidemic continues unabated, with no highly effective vaccine and no cure. Each new infection has significant economic, social and human costs and prevention efforts are now as great a priority as global antiretroviral therapy (ART) scale up. Reverse transcriptase inhibitors, the first licensed class of ART, have been at the forefront of treatment and prevention of mother to child transmission over the past two decades. Now, their use in adult prevention is being

    Characterizing the emergence and persistence of drug resistant mutations in HIV-1 subtype C infections using 454 ultra deep pyrosequencing.

    Get PDF
    BACKGROUND: The role of HIV-1 RNA in the emergence of resistance to antiretroviral therapies (ARTs) is well documented while less is known about the role of historical viruses stored in the proviral DNA. The primary focus of this work was to characterize the genetic diversity and evolution of HIV drug resistant variants in an individual's provirus during antiretroviral therapy using next generation sequencing. METHODS: Blood samples were collected prior to antiretroviral therapy exposure and during the course of treatment from five patients in whom drug resistance mutations had previously been identified using consensus sequencing. The spectrum of viral variants present in the provirus at each sampling time-point were characterized using 454 pyrosequencing from multiple combined PCR products. The prevalence of viral variants containing drug resistant mutations (DRMs) was characterized at each time-point. RESULTS: Low abundance drug resistant viruses were identified in 14 of 15 sampling time-points from the five patients. In all individuals DRMs against current therapy were identified at one or more of the sampling time-points. In two of the five individuals studied these DRMs were present prior to treatment exposure and were present at high prevalence within the amplified and sequenced viral population. DRMs to drugs other than those being currently used were identified in four of the five individuals. CONCLUSION: The presence of DRMs in the provirus, regardless of their observed prevalence did not appear to have an effect on clinical outcomes in the short term suggesting that the drug resistant viral variants present in the proviral DNA do not appear to play a role in the short term in facilitating the emergence of drug resistance
    corecore