31 research outputs found

    First Total Synthesis of a Naturally Occurring Iodinated 5′-Deoxyxylofuranosyl Marine Nucleoside

    Get PDF
    4-Amino-7-(5′-deoxy-β-D-xylofuranosyl)-5-iodo-pyrrolo[2,3-d]pyrimidine 1, an unusual naturally occurring marine nucleoside isolated from an ascidan, Diplosoma sp., was synthesized from D-xylose in seven steps with 28% overall yield on 10 g scale. The key step was Vorbrüggen glycosylation of 5-iodo-pyrrolo[2,3-d]pyrimidine with 5-deoxy-1,2-O-diacetyl-3-O-benzoyl-D-xylofuranose. Its absolute configuration was confirmed

    Dual functions of the ZmCCT-associated quantitative trait locus in flowering and stress responses under long-day conditions

    Get PDF
    Gene ontology enrichment of differentially expressed genes in HZ4 and HZ4-NIL in three development stages. (XLS 21 kb

    Application of Shannon Wavelet Entropy and Shannon Wavelet Packet Entropy in Analysis of Power System Transient Signals

    No full text
    In a power system, the analysis of transient signals is the theoretical basis of fault diagnosis and transient protection theory. Shannon wavelet entropy (SWE) and Shannon wavelet packet entropy (SWPE) are powerful mathematics tools for transient signal analysis. Combined with the recent achievements regarding SWE and SWPE, their applications are summarized in feature extraction of transient signals and transient fault recognition. For wavelet aliasing at adjacent scale of wavelet decomposition, the impact of wavelet aliasing is analyzed for feature extraction accuracy of SWE and SWPE, and their differences are compared. Meanwhile, the analyses mentioned are verified by partial discharge (PD) feature extraction of power cable. Finally, some new ideas and further researches are proposed in the wavelet entropy mechanism, operation speed and how to overcome wavelet aliasing

    A Novel Method for PD Feature Extraction of Power Cable with Renyi Entropy

    No full text
    Partial discharge (PD) detection can effectively achieve the status maintenance of XLPE (Cross Linked Polyethylene) cable, so it is the direction of the development of equipment maintenance in power systems. At present, a main method of PD detection is the broadband electromagnetic coupling with a high-frequency current transformer (HFCT). Due to the strong electromagnetic interference (EMI) generated among the mass amount of cables in a tunnel and the impedance mismatching of HFCT and the data acquisition equipment, the features of the pulse current generated by PD are often submerged in the background noise. The conventional method for the stationary signal analysis cannot analyze the PD signal, which is transient and non-stationary. Although the algorithm of Shannon wavelet singular entropy (SWSE) can be used to analyze the PD signal at some level, its precision and anti-interference capability of PD feature extraction are still insufficient. For the above problem, a novel method named Renyi wavelet packet singular entropy (RWPSE) is proposed and applied to the PD feature extraction on power cables. Taking a three-level system as an example, we analyze the statistical properties of Renyi entropy and the intrinsic correlation with Shannon entropy under different values of α . At the same time, discrete wavelet packet transform (DWPT) is taken instead of discrete wavelet transform (DWT), and Renyi entropy is combined to construct the RWPSE algorithm. Taking the grounding current signal from the shielding layer of XLPE cable as the research object, which includes the current pulse feature of PD, the effectiveness of the novel method is tested. The theoretical analysis and experimental results show that compared to SWSE, RWPSE can not only improve the feature extraction accuracy for PD, but also can suppress EMI effectively

    A GBH/LiBH4 coordination system with favorable dehydrogenation

    Get PDF
    A novel combined hydrogen storage system LiBH4/[C(NH2)3]+[BH4]− (GBH) complexes were reported. By a short time ball milling of LiBH4 and guanidinium chloride, a series of new LiBH4/GBH complexes were produced. It was found that the two potential hydrogen storage materials exhibited a mutual dehydrogenation improvement, releasing \u3e10.0 wt.% of fairly pure H2 from LiBH4/GBH below 250 °C. Further investigations revealed that balancing the protic and hydridic hydrogens, and the complexation between LiBH4 and GBH, are two important roles in the improvement of the dehydrogenation of this system, which may serve as an alternative strategy for developing a new metal borohydride/B–N–H system with favourable dehydrogenation

    Intraguild Predation of <i>Hippodamia variegata</i> on Aphid Mummies in Cotton Field

    No full text
    Intraguild predation among arthropod predators in agricultural ecosystems may have a negative impact on biological control. At present, there are few direct reports on trophic relationships among participants of predation in field groups. In this study, we measured the feeding choices of Hippodamia variegata (Goeze) towards mummies with different densities of Aphis gossypii Glover. The dynamics of the occurrence of mummies in the cotton field were investigated over 2017–2019. Singleplex PCR and multiplex PCR were used to detect the predation of 2090 H. variegata individuals on aphids and mummies in Xinjiang cotton field, which revealed the intraguild predation frequency between H. variegata and various parasitoids. There was no obvious feeding preference of H. variegata towards live aphids or mummies, which mainly depended on the relative density of prey. Among the four species of aphids detected in H. variegata, A. gossypii had a high detection rate and was the main prey source of the ladybeetle in the cotton filed. Mostly, ladybeetles consumed parasitoids through mummies, with 6.39% directly feeding on adult parasitoids. H. variegata had strong trophic links to both parasitoids and aphids. We established a food web of aphids–primary parasitoids–hyperparasitoids–H. variegata, which can be used to evaluate the pest control ability of H. variegata from a new perspective

    A Transient Fault Recognition Method for an AC-DC Hybrid Transmission System Based on MMC Information Fusion

    No full text
    At present, the research is still in the primary stage in the process of fault disturbance energy transfer in the multilevel modular converter based high voltage direct current (HVDC-MMC). An urgent problem is how to extract and analyze the fault features hidden in MMC electrical information in further studies on the HVDC system. Aiming at the above, this article analyzes the influence of AC transient disturbance on electrical signals of MMC. At the same time, it is found that the energy distribution of electrical signals in MMC is different for different arms in the same frequency bands after the discrete wavelet packet transformation (DWPT). Renyi wavelet packet energy entropy (RWPEE) and Renyi wavelet packet time entropy (RWPTE) are proposed and applied to AC transient fault feature extraction from electrical signals in MMC. Using the feature extraction results of Renyi wavelet packet entropy (RWPE), a novel recognition method is put forward to recognize AC transient faults using the information fusion technology. Theoretical analysis and experimental results show that the proposed method is available to recognize transient AC faults
    corecore