1,089 research outputs found

    The influence of Massive Black Hole Binaries on the Morphology of Merger Remnants

    Get PDF
    Massive black hole (MBH) binaries, formed as a result of galaxy mergers, are expected to harden by dynamical friction and three-body stellar scatterings, until emission of gravitational waves (GWs) leads to their final coalescence. According to recent simulations, MBH binaries can efficiently harden via stellar encounters only when the host geometry is triaxial, even if only modestly, as angular momentum diffusion allows an efficient repopulation of the binary loss cone. In this paper, we carry out a suite of N-body simulations of equal-mass galaxy collisions, varying the initial orbits and density profiles for the merging galaxies and running simulations both with and without central MBHs. We find that the presence of an MBH binary in the remnant makes the system nearly oblate, aligned with the galaxy merger plane, within a radius enclosing 100 MBH masses. We never find binary hosts to be prolate on any scale. The decaying MBHs slightly enhance the tangential anisotropy in the centre of the remnant due to angular momentum injection and the slingshot ejection of stars on nearly radial orbits. This latter effect results in about 1% of the remnant stars being expelled from the galactic nucleus. Finally, we do not find any strong connection between the remnant morphology and the binary hardening rate, which depends only on the inner density slope of the remnant galaxy. Our results suggest that MBH binaries are able to coalesce within a few Gyr, even if the binary is found to partially erase the merger-induced triaxiality from the remnant.Comment: 16 pages, 13 figures, 4 tables; accepted for publication in MNRA

    Hawking Radiation from Fluctuating Black Holes

    Get PDF
    Classically, black Holes have the rigid event horizon. However, quantum mechanically, the event horizon of black holes becomes fuzzy due to quantum fluctuations. We study Hawking radiation of a real scalar field from a fluctuating black hole. To quantize metric perturbations, we derive the quadratic action for those in the black hole background. Then, we calculate the cubic interaction terms in the action for the scalar field. Using these results, we obtain the spectrum of Hawking radiation in the presence of interaction between the scalar field and the metric. It turns out that the spectrum deviates from the Planck spectrum due to quantum fluctuations of the metric.Comment: 35pages, 4 figure

    Generation of human colon organoids from healthy and inflammatory bowel disease mucosa

    Full text link
    Ulcerative colitis and Crohn's disease are chronic inflammatory bowel diseases (IBD) of unknown cause characterized by a relapsing-remitting behavior. Growing evidence supports the idea that the epithelial barrier plays a central role in the pathogenesis of IBD as well as in its evolution over time, thus representing a potential target for novel therapeutic options. In the last decade, the introduction of 3D epithelial cultures from ex vivo-expanded intestinal adult stem cells (ASCs) has impacted our ability to study the function of the epithelium in several gastrointestinal disorders, including IBD. Here, we describe in detail a reproducible protocol to generate Matrigel-embedded epithelial organoids from ASCs of non-IBD and IBD donors using small colonic biopsies, including steps for its optimization. A slightly modified version of this protocol is also provided in case surgical samples are used. With this method, epithelial organoids can be expanded over several passages, thereby generating a large quantity of viable cells that can be used in multiple downstream analyses including genetic, transcriptional, proteomic and/or functional studies. In addition, 3D cultures generated using our protocol are suitable for the establishment of 2D cultures, which can model relevant cell-to-cell interactions that occur in IBD mucosa

    Hyperk\"ahler torsion structures invariant by nilpotent Lie groups

    Full text link
    We study HKT structures on nilpotent Lie groups and on associated nilmanifolds. We exhibit three weak HKT structures on R8\R^8 which are homogeneous with respect to extensions of Heisenberg type Lie groups. The corresponding hypercomplex structures are of a special kind, called abelian. We prove that on any 2-step nilpotent Lie group all invariant HKT structures arise from abelian hypercomplex structures. Furthermore, we use a correspondence between abelian hypercomplex structures and subspaces of sp(n){\frak sp}(n) to produce continuous families of compact and noncompact of manifolds carrying non isometric HKT structures. Finally, geometrical properties of invariant HKT structures on 2-step nilpotent Lie groups are obtained.Comment: LateX, 12 page

    Gravitational instability of Einstein-Gauss-Bonnet black holes under tensor mode perturbations

    Full text link
    We analyze the tensor mode perturbations of static, spherically symmetric solutions of the Einstein equations with a quadratic Gauss-Bonnet term in dimension D>4D > 4. We show that the evolution equations for this type of perturbations can be cast in a Regge-Wheeler-Zerilli form, and obtain the exact potential for the corresponding Schr\"odinger-like stability equation. As an immediate application we prove that for D6D \neq 6 and α>0\alpha >0, the sign choice for the Gauss-Bonnet coefficient suggested by string theory, all positive mass black holes of this type are stable. In the exceptional case D=6D =6, we find a range of parameters where positive mass asymptotically flat black holes, with regular horizon, are unstable. This feature is found also in general for α<0\alpha < 0.Comment: 7 pages, 1 figure, minor corrections, references adde
    corecore