96 research outputs found

    La prevenzione del diabete mellito di tipo 1

    Get PDF
    Il trattamento del diabete di tipo 1 (DM1) prevede la somministrazione di insulina che tuttavia non rappresenta, com’è noto, una vera e propria “cura” per questa malattia. Negli ultimi decenni stiamo assistendo allo sviluppo di strategie preventive per il DM1 articolate su tre livelli: una prevenzione primaria finalizzata a prevenire lo sviluppo del processo autoimmune responsabile della distruzione β-cellulare che caratterizza la malattia; una prevenzione secondaria per arrestare il processo autoimmunitario e impedire l’esordio clinico del diabete; una prevenzione terziaria per preservare la massa β-cellulare residua e per ridurre il rischio di sviluppo delle complicanze croniche. Fra i molteplici approcci terapeutici sviluppati per impedire, ritardare o arrestare la distruzione β-cellulare l’immunoterapia, in particolare, è stata ed è tutt’oggi oggetto di innumerevoli ricerche. I risultati sono tutt’altro che semplici da raggiungere, in quanto i meccanismi eziopatogenetici alla base del DM1 sono complessi e non ancora del tutto noti. Per il raggiungimento di un’efficacia preventiva è importante, inoltre, tenere in considerazione l’eterogeneità del DM1, la quale indubbiamente ha influenzato i risultati dei trattamenti finora sperimentati, così come validare nuovi biomarcatori che ci permettano di selezionare al meglio i pazienti da indirizzare a un determinato trattamento

    Pathogenesis of Autoimmune Cytopenias in Inborn Errors of Immunity Revealing Novel Therapeutic Targets

    Get PDF
    Autoimmune diseases are usually associated with environmental triggers and genetic predisposition. However, a few number of autoimmune diseases has a monogenic cause, mostly in children. These diseases may be the expression, isolated or associated with other symptoms, of an underlying inborn error of immunity (IEI). Autoimmune cytopenias (AICs), including immune thrombocytopenic purpura (ITP), autoimmune hemolytic anemia (AIHA), autoimmune neutropenia (AN), and Evans' syndrome (ES) are common presentations of immunological diseases in the pediatric age, with at least 65% of cases of ES genetically determined. Autoimmune cytopenias in IEI have often a more severe, chronic, and relapsing course. Treatment refractoriness also characterizes autoimmune cytopenia with a monogenic cause, such as IEI. The mechanisms underlying autoimmune cytopenias in IEI include cellular or humoral autoimmunity, immune dysregulation in cases of hemophagocytosis or lymphoproliferation with or without splenic sequestration, bone marrow failure, myelodysplasia, or secondary myelosuppression. Genetic characterization of autoimmune cytopenias is of fundamental importance as an early diagnosis improves the outcome and allows the setting up of a targeted therapy, such as CTLA-4 IgG fusion protein (Abatacept), small molecule inhibitors (JAK-inhibitors), or gene therapy. Currently, gene therapy represents one of the most attractive targeted therapeutic approaches to treat selected inborn errors of immunity. Even in the absence of specific targeted therapies, however, whole exome genetic testing (WES) for children with chronic multilineage cytopenias should be considered as an early diagnostic tool for disease diagnosis and genetic counseling

    Reduced miR-184-3p expression protects pancreatic β-cells from lipotoxic and proinflammatory apoptosis in type 2 diabetes via CRTC1 upregulation

    Get PDF
    The loss of functional beta-cell mass in type 2 diabetes (T2D) is associated with molecular events that include beta-cell apoptosis, dysfunction and/or dedifferentiation. MicroRNA miR-184-3p has been shown to be involved in several beta-cell functions, including insulin secretion, proliferation and survival. However, the downstream targets and upstream regulators of miR-184-3p have not been fully elucidated. Here, we show reduced miR-184-3p levels in human T2D pancreatic islets, whereas its direct target CREB regulated transcription coactivator 1 (CRTC1) was increased and protects beta-cells from lipotoxicity- and inflammation-induced apoptosis. Downregulation of miR-184-3p in beta-cells leads to upregulation of CRTC1 at both the mRNA and protein levels. Remarkably, the protective effect of miR-184-3p is dependent on CRTC1, as its silencing in human beta-cells abrogates the protective mechanism mediated by inhibition of miR-184-3p. Furthermore, in accordance with miR-184-3p downregulation, we also found that the beta-cell-specific transcription factor NKX6.1, DNA-binding sites of which are predicted in the promoter sequence of human and mouse MIR184 gene, is reduced in human pancreatic T2D islets. Using chromatin immunoprecipitation analysis and mRNA silencing experiments, we demonstrated that NKX6.1 directly controls both human and murine miR-184 expression. In summary, we provide evidence that the decrease in NKX6.1 expression is accompanied by a significant reduction in miR-184-3p expression and that reduction of miR-184-3p protects beta-cells from apoptosis through a CRTC1-dependent mechanism

    A MALDI-TOF MS approach for mammalian, human, and formula milks’ profiling

    Get PDF
    Human milk composition is dynamic, and substitute formulae are intended to mimic its protein content. The purpose of this study was to investigate the potentiality of matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), followed by multivariate data analyses as a tool to analyze the peptide profiles of mammalian, human, and formula milks. Breast milk samples from women at different lactation stages (2 (n = 5), 30 (n = 6), 60 (n = 5), and 90 (n = 4) days postpartum), and milk from donkeys (n = 4), cows (n = 4), buffaloes (n = 7), goats (n = 4), ewes (n = 5), and camels (n = 2) were collected. Different brands (n = 4) of infant formulae were also analyzed. Protein content (<30 kDa) was analyzed by MS, and data were exported for statistical elaborations. The mass spectra for each milk closely clustered together, whereas different milk samples resulted in well-separated mass spectra. Human samples formed a cluster in which colostrum constituted a well-defined subcluster. None of the milk formulae correlated with animal or human milk, although they were specifically characterized and correlated well with each other. These findings propose MALDI-TOF MS milk profiling as an analytical tool to discriminate, in a blinded way, different milk types. As each formula has a distinct specificity, shifting a baby from one to another formula implies a specific proteomic exposure. These profiles may assist in milk proteomics for easiness of use and minimization of costs, suggesting that the MALDI-TOF MS pipelines may be useful for not only milk adulteration assessments but also for the characterization of banked milk specimens in pediatric clinical settings

    Transient Decrease of Circulating and Tissular Dendritic Cells in Patients With Mycobacterial Disease and With Partial Dominant IFN\u3b3R1 Deficiency

    Get PDF
    Interferon-\u3b3 receptor 1 (IFN\u3b3R1) deficiency is one of the inborn errors of IFN-\u3b3 immunity underlying Mendelian Susceptibility to Mycobacterial Disease (MSMD). This molecular circuit plays a crucial role in regulating the interaction between dendritic cells (DCs) and T lymphocytes, thus affecting DCs activation, maturation, and priming of T cells involved in the immune response against intracellular pathogens. We studied a girl who developed at the age of 2.5 years a Mycobacterium avium infection characterized by disseminated necrotizing granulomatous lymphadenitis, and we compared her findings with other patients with the same genetic condition. The patient carried a heterozygous 818del4 mutation in the IFNGR1 gene responsible of autosomal dominant (AD) partial IFN\u3b3R1 deficiency. During the acute infection blood cells immunophenotyping showed a marked reduction in DCs counts, including both myeloid (mDCs) and plasmacytoid (pDCs) subsets, that reversed after successful prolonged antimicrobial therapy. Histology of her abdomen lymph node revealed a profound depletion of tissue pDCs, as compared to other age-matched granulomatous lymphadenitis of mycobacterial origin. Circulating DCs depletion was also observed in another patient with AD partial IFN\u3b3R1 deficiency during mycobacterial infection. To conclude, AD partial IFN\u3b3R1 deficiency can be associated with a transient decrease in both circulating and tissular DCs during acute mycobacterial infection, suggesting that DCs counts monitoring might constitute a useful marker of treatment response

    MicroRNA miR-124a, a negative regulator of insulin secretion, is hyperexpressed in human pancreatic islets of type 2 diabetic patients

    Get PDF
    MicroRNAs are a class of negative regulators of gene expression, which have been demonstrated to be involved in the development of endocrine pancreas and in the regulation of insulin secretion. Type 2 Diabetes (T2D) is a metabolic disease characterized by insulin-resistance in target tissues and by the functional alteration of pancreatic insulin-secreting beta-cells. Recently, we characterized the expression levels of microRNAs miR-124a and miR-375, both involved in the control of beta cell function, in human pancreatic islets obtained from T2D and from age-matched non-diabetic organ donors. We observed the hyperexpression of miR-124a in human pancreatic islets obtained from T2D patients vs non-diabetic subjects, while miR-375 did not result differentially expressed. Moreover, we demonstrated that miR-124a overexpression in MIN6-pseudoislets reduced glucose-stimulated insulin secretion. Among predicted miR-124a target genes we focused on Foxa2 and Mtpn, which are both involved in the regulation of insulin secretion and of glucose sensing. Indeed, using luciferase assay, we validated miR-124a targeting Foxa2 and Mtpn 3’UTR sequences. Accordingly, upon miR-124a inhibition in MIN6 pseudoislets, we detected the upregulation of Foxa2 and Mtpn and of other selected miR-124a predicted target genes such as Akt3, Flot2, Sirt1, and NeuroD1, indicating a possible role for such a microRNA in the control of several beta-cell functions. In conclusion, we uncovered a major hyperexpression of miR-124a in T2D islets, whose silencing resulted in increased expression of target genes of major importance for beta cell function and whose overexpression impaired glucose stimulated insulin secretion, leading to the hypothesis that an altered miR-124a expression may contribute to beta cell dysfunction in type 2 diabete

    Multisystem autoimmune disease caused by increased STAT3 phosphorylation, and dysregulated gene expression

    Get PDF
    Signal transducer and activator of transcription (STAT) 3 is a member of the STAT family, and plays a major role in various immunological mechanisms.1 Mutations in STAT3 are associated with a broad spectrum of manifestations, including immunodeficiency, autoimmunity, and malignancy.2 In particular, heterozygous germline loss-of-function (LOF) mutations cause Hyper-IgE syndrome (HIES),3–5 while heterozygous germline gain-of-function (GOF) mutations have recently been associated to multi-organ autoimmune manifestations (i.e. type 1 diabetes, enteropathy, cytopenia, interstitial lung disease, hypothyroidism), lymphoproliferation, short stature, and recurrent infections (OMIM #615952).6–8 We report a 7-year-old boy who presented with early-onset severe enteropathy, and diffuse eczematous dermatitis since birth. During the first weeks of life, Hirschsprung disease was also suspected and surgically treated. Gastrointestinal and cutaneous manifestations were first ascribed to food allergy with quite a good response to amino acid-based formula. In the following months, the patient failed to thrive, and developed respiratory tract infections. At two years, the patient presented with progressive interstitial lung disease characterized by lymphocytic interstitial infiltration leading to pulmonary hypertension, tricuspid insufficiency, and right ventricular heart failure with hepatomegaly. Because of the increased risk of infections, he received intravenous (IV) immunoglobulin infusions (400 mg/kg), prophylaxis with cotrimoxazole and fluconazole. Methylprednisolone at 0.3 mg/kg/day was also given to treat autoimmune manifestations

    Increased Expression of Viral Sensor MDA5 in Pancreatic Islets and in Hormone-Negative Endocrine Cells in Recent Onset Type 1 Diabetic Donors

    Get PDF
    The interaction between genetic and environmental factors determines the development of type 1 diabetes (T1D). Some viruses are capable of infecting and damaging pancreatic β-cells, whose antiviral response could be modulated by specific viral RNA receptors and sensors such as melanoma differentiation associated gene 5 (MDA5), encoded by the IFIH1 gene. MDA5 has been shown to be involved in pro-inflammatory and immunoregulatory outcomes, thus determining the response of pancreatic islets to viral infections. Although the function of MDA5 has been previously well explored, a detailed immunohistochemical characterization of MDA5 in pancreatic tissues of nondiabetic and T1D donors is still missing. In the present study, we used multiplex immunofluorescence imaging analysis to characterize MDA5 expression and distribution in pancreatic tissues obtained from 22 organ donors (10 nondiabetic autoantibody-negative, 2 nondiabetic autoantibody-positive, 8 recent-onset, and 2 long-standing T1D). In nondiabetic control donors, MDA5 was expressed both in α- and β-cells. The colocalization rate imaging analysis showed that MDA5 was preferentially expressed in α-cells. In T1D donors, we observed an increased colocalization rate of MDA5-glucagon with respect to MDA5-insulin in comparison to nondiabetic controls; such increase was more pronounced in recent-onset with respect to long-standing T1D donors. Of note, an increased colocalization rate of MDA5-glucagon was found in insulin-deficient-islets (IDIs) with respect to insulin-containing-islets (ICIs). Strikingly, we detected the presence of MDA5-positive/hormone-negative endocrine islet-like clusters in T1D donors, presumably due to dedifferentiation or neogenesis phenomena. These clusters were identified exclusively in donors with recent disease onset and not in autoantibody-positive nondiabetic donors or donors with long-standing T1D. In conclusion, we showed that MDA5 is preferentially expressed in α-cells, and its expression is increased in recent-onset T1D donors. Finally, we observed that MDA5 may also characterize the phenotype of dedifferentiated or newly forming islet cells, thus opening to novel roles for MDA5 in pancreatic endocrine cells

    Increased use of high-flow nasal cannulas after the pandemic in bronchiolitis: a more severe disease or a changed physician's attitude?

    Get PDF
    After the SARS-CoV-2 pandemic, we noticed a marked increase in high-flow nasal cannula use for bronchiolitis. This study aims to report the percentage of children treated with high-flow nasal cannula (HFNC) in various seasons. The secondary outcomes were admissions for bronchiolitis, virological results, hospital burden, and NICU/PICU need. We conducted a retrospective study in four Italian hospitals, examining the medical records of all infants (< 12 months) hospitalized for bronchiolitis in the last four winter seasons (1 September-31 March 2018-2022). In the 2021-2022 winter season, 66% of admitted children received HFNC versus 23%, 38%, and 35% in the previous 3 years. A total of 876 patients were hospitalized in the study periods. In 2021-2022, 300 infants were hospitalized for bronchiolitis, 22 in 2020-2021, 259 in 2019-2020, and 295 in 2018-2019. The percentage of patients needing intensive care varied from 28.7% to 18%, 22%, and 15% in each of the four considered periods (p < 0.05). Seventy-seven percent of children received oxygen in the 2021-2022 winter; vs 50%, 63%, and 55% (p < 0.01) in the previous 3 years. NIV/CPAP was used in 23%, 9%, 16%, and 12%, respectively. In 2021-2020, 2% of patients were intubated; 0 in 2020-2021, 3% in 2019-2020, and 1% in 2018-2019
    • …
    corecore