16 research outputs found

    Formation, optical and electrical properties of a new semiconductor phase of calcium silicide on Si(111)

    Get PDF
    AbstractThe electronic structure and morphology of calcium silicide films formed by reactive deposition epitaxy at 130 oC on Mg2Si film and at 500 oC on Si(111)7x7 surface, their optical and electrical properties have been investigated. Formation of new calcium silicide phase with high Si concentration, indirect band gap (0.63eV), high conductivity at low temperatures (50-450K) has been obtained after calcium deposition at 500 oC on Si(111)7x7 surface

    Stability of critical behaviour of weakly disordered systems with respect to the replica symmetry breaking

    Full text link
    A field-theoretic description of the critical behaviour of the weakly disordered systems is given. Directly, for three- and two-dimensional systems a renormalization analysis of the effective Hamiltonian of model with replica symmetry breaking (RSB) potentials is carried out in the two-loop approximation. For case with 1-step RSB the fixed points (FP's) corresponding to stability of the various types of critical behaviour are identified with the use of the Pade-Borel summation technique. Analysis of FP's has shown a stability of the critical behaviour of the weakly disordered systems with respect to RSB effects and realization of former scenario of disorder influence on critical behaviour.Comment: 10 pages, RevTeX. Version 3 adds the β\beta functions for arbitrary dimension of syste

    Critical behavior of weakly-disordered anisotropic systems in two dimensions

    Full text link
    The critical behavior of two-dimensional (2D) anisotropic systems with weak quenched disorder described by the so-called generalized Ashkin-Teller model (GATM) is studied. In the critical region this model is shown to be described by a multifermion field theory similar to the Gross-Neveu model with a few independent quartic coupling constants. Renormalization group calculations are used to obtain the temperature dependence near the critical point of some thermodynamic quantities and the large distance behavior of the two-spin correlation function. The equation of state at criticality is also obtained in this framework. We find that random models described by the GATM belong to the same universality class as that of the two-dimensional Ising model. The critical exponent ν\nu of the correlation length for the 3- and 4-state random-bond Potts models is also calculated in a 3-loop approximation. We show that this exponent is given by an apparently convergent series in ϵ=c12\epsilon=c-\frac{1}{2} (with cc the central charge of the Potts model) and that the numerical values of ν\nu are very close to that of the 2D Ising model. This work therefore supports the conjecture (valid only approximately for the 3- and 4-state Potts models) of a superuniversality for the 2D disordered models with discrete symmetries.Comment: REVTeX, 24 pages, to appear in Phys.Rev.

    Mg(2)Si(x)Sn(1-x)heterostructures on Si(111) substrate for optoelectronics and thermoelectronics

    Get PDF
    Thin (50-90 m) non-doped and doped (by Al atoms) Mg2Sn0.6Si0.4 and Mg(2)Sn(0.4)Si(0.6)films with roughness of 1.9-3.7 nm have been grown by multiple deposition and single annealing at 150 degrees C of multilayers formed by repetition deposition of three-layers (Si-Sn-Mg) on Si(111) p-type wafers with 45 cm resistivity. Transmission electron microscopy has shown that the first forming layer is an epitaxial layer of hex-Mg2Sn(300) on Si(111) substrate with thickness not more than 5-7 nm. Epitaxial relationships: hex-Mg2Sn(300)parallel to Si(111), hex-Mg2Sn[001]parallel to Si[-112] and hex-Mg2Sn[030]parallel to Si[110] have been found for the epitaxial layer. But inclusions of cub-Mg2Si were also observed inside hex-Mg2Sn layer. It was found that the remaining part of the film thickness is in amorphous state and has a layered distribution of major elements: Mg, Sn and Mg without exact chemical composition. It was established by optical spectroscopy data that both type films are semiconductor with undispersed region lower 0.18 eV with n(o) = 3.59 +/- 0.01, but only two direct interband transitions with energies 0.75-0.76 eV and 1.2 eV have been determined. The last interband transition has been confirmed by photoreflectance data at room temperature. Fourier transmittance spectroscopy and Raman spectroscopy data have established the formation of stannide, silicide and ternary compositions

    Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose-Einstein condensate

    Full text link
    We demonstrate that the ambiguity of the particle content for quantum fields in a generally curved space-time can be experimentally investigated in an ultracold gas of atoms forming a Bose-Einstein condensate. We explicitly evaluate the response of a suitable condensed matter detector, an ``Atomic Quantum Dot,'' which can be tuned to measure time intervals associated to different effective acoustic space-times. It is found that the detector response related to laboratory, ``adiabatic,'' and de Sitter time intervals is finite in time and nonstationary, vanishing, and thermal, respectively.Comment: 9 pages, 2 figures; references updated, as published in Physical Review

    Quantum jumps induced by the center-of-mass motion of a trapped atom

    Full text link
    We theoretically study the occurrence of quantum jumps in the resonance fluorescence of a trapped atom. Here, the atom is laser cooled in a configuration of level such that the occurrence of a quantum jump is associated to a change of the vibrational center-of-mass motion by one phonon. The statistics of the occurrence of the dark fluorescence period is studied as a function of the physical parameters and the corresponding features in the spectrum of resonance fluorescence are identified. We discuss the information which can be extracted on the atomic motion from the observation of a quantum jump in the considered setup

    Modeling Translation in Protein Synthesis with TASEP: A Tutorial and Recent Developments

    Full text link
    The phenomenon of protein synthesis has been modeled in terms of totally asymmetric simple exclusion processes (TASEP) since 1968. In this article, we provide a tutorial of the biological and mathematical aspects of this approach. We also summarize several new results, concerned with limited resources in the cell and simple estimates for the current (protein production rate) of a TASEP with inhomogeneous hopping rates, reflecting the characteristics of real genes.Comment: 25 pages, 7 figure

    Національна доповідь про стан і перспективи розвитку освіти в Україні: монографія (До 30-річчя незалежності України)

    Get PDF
    The publication provides a comprehensive analysis of the state and development of national education over the 30 years of Ukraine’s independence, identifies current problems in education, ascertains the causes of their emergence, offers scientifically reasoned ways to modernise domestic education in the context of globalisation, European integration, innovative development, and national self-identification. Designed for legislators, state officials, education institutions leaders, teaching and academic staff, the general public, all those who seek to increase the competitiveness of Ukrainian education in the context of civilisation changes.У виданні здійснено всебічний аналіз стану і розвитку національної освіти за 30-річний період незалежності України, визначено актуальні проблеми освітньої сфери, виявлено причини їх виникнення, запропоновано науково обґрунтовані шляхи модернізації вітчизняної освіти в умовах глобалізації, європейської інтеграції, інноваційного розвитку та національної самоідентифікації. Розраховано на законодавців, державних управлінців, керівників закладів освіти, педагогічних і науково-педагогічних працівників, широку громадськість, усіх, хто прагне підвищення конкурентоспроможності української освіти в контексті цивілізаційних змін
    corecore