25 research outputs found
Techno-economic analysis of combining forward osmosis-reverse osmosis and anaerobic membrane bioreactor technologies for municipal wastewater treatment and water production
The economic feasibility of combining forward osmosis (FO), reverse osmosis (RO) and anaerobic membrane bioreactor (AnMBR) technologies for municipal wastewater treatment with energy and water production was analysed. FO was used to pre-concentrate the AnMBR influent, RO for draw solution regeneration and water production, and AnMBR for wastewater treatment and energy production. The minimum wastewater treatment cost was estimated at 0.81 Âż m-3, achieved when limiting the FO recovery to 50% in a closed-loop scheme, however, the cost increased to 1.01 and 1.27 Âż m-3 for FO recoveries of 80% and 90%, respectively. The fresh water production cost was estimated at 0.80 and 1.16 Âż m-3 for an open-loop scheme maximising water production and a closed-loop scheme, respectively. The low FO membrane fluxes were identified as a limiting factor and a sensitivity analysis revealed that FO membrane fluxes of 10 LMH would significantly improve the competitiveness of FO-RO+AnMBR technology
Enhancement of volatile fatty acids production from food waste by mature compost addition
Food waste (FW) collected from a university canteen was treated in acidogenic fermenters to produce volatile fatty acids (VFA) under biological pretreatment with mature compost. Batch assays working at pH 6 revealed an increment of 9.0%, 7.9%, and 4.1% (on COD basis) of VFA concentration when adding 2.5%, 3.5%, and 4.5% w/w of mature compost, respectively, even though the volatile solids (VS) concentration of food waste was lower in the tests with increasing doses of mature compost. For batch tests at pH 7, this VFA generation improvement was lower, even though enhanced COD solubilization was recorded. Operating in semi-continuous conditions at 35 ÂșC, pH of 6, and hydraulic retention time (HRT) of 3.5 days, the addition of 2.5% w/w of mature compost led to a VFA concentration up to 51.2 ± 12.3% more (on VS basis) when compared to a reference reactor without compost addition. Moreover, the percentage of butyric acid on VS basis in the fermentation broth working at a pH of 6 increased from up to 12.2 ± 1.9% (0% compost addition) to up to 23.5 ± 2.7% (2.5% compost addition). The VFA production was not improved when a higher percentage of mature compost was used (3.5% instead of 2.5% w/w), and it slightly decreased when mature compost addition was lowered to 1.5% w/w. When working at a pH of 7 in the semi-continuous fermenters with the addition of 2.5% w/w mature compost at an HRT of 3.5 days, an improvement of 79% and 104% of the VFA concentration (on VS basis) were recorded as compared to fermenters working at a pH of 6 with 2.5% and 0% w/w of mature compost addition, respectively. At a pH of 7, higher production of propionic and valeric acids was found with respect to the reactor working at a pH of 6. The effect of pH on VFA generation was estimated to have greater contribution than that of only biological pretreatment using mature compost. At a pH of 7, the VFA yield was higher for the fermenter working with 2.5% w/w mature compost but at a pH of 7 and HRT of 5 days, the effect of mature compost on VFA production improvement was lower than that obtained at a pH of 6. Moreover, higher solubilization in terms of soluble chemical oxygen demand and total ammonium was detected when biological pretreatment using mature compost was applied at both a pH of 6 and a pH of 7, which indicates enhanced hydrolysis in both conditions
Co-digestion of sewage sludge and food waste in a wastewater treatment plant based on mainstream anaerobic membrane bioreactor technology: A techno-economic evaluation
The implementation of anaerobic membrane bioreactor as mainstream technology would reduce the load of sidestream anaerobic digesters. This research evaluated the techno-economic implications of co-digesting sewage sludge and food waste in such wastewater treatment plants to optimise the usage of the sludge line infrastructure. Three organic loading rates (1.0, 1.5 and 2.0 kg VS mâ 3 dâ 1 ) and different strategies to manage the additional nutrients backload were considered. Results showed that the higher electricity revenue from co-digesting food waste offsets the additional costs of food waste acceptance infrastructure and biosolids disposal. However, the higher electricity revenue did not offset the additional costs when the nutrients backload was treated in the sidestream (partial-nitritation/anammox and struvite precipitation). Biosolids disposal was identified as the most important gross cost contributor in all the scenarios. Finally, a sensitivity analysis showed that food waste gate fee had a noticeable influence on co-digestion economic feasibilit
Exploring the potential of co-fermenting sewage sludge and lipids in a resource recovery scenario
In this study, co-fermentation of primary sludge (PS) or waste activated sludge (WAS) with lipids was explored to improve volatile fatty acid production. PS and WAS were used as base substrate to facilitate lipid fermentation at 20 °C under semi-aerobic conditions. Mono-fermentation tests showed higher VFA yields for PS (32-89 mgCOD gVS-1) than for WAS (20-41 mgCOD gVS-1) where propionate production was favoured. The principal component analysis showed that the base substrate had a notable influence on co-fermentation yields and profile. Co-fermentation with WAS resulted in a greater extent of oleic acid degradation (up to 4.7%) and evidence of chain elongation producing valerate. The occurrence of chain elongation suggests that co-fermentation can be engineered to favour medium-chain fatty acids without the addition of external commodity chemicals. BMP tests showed that neither mono-fermentation nor co-fermentation had an impact on downstream anaerobic digestion
Impact of food waste composition on acidogenic co-fermentation with waste activated sludge
The impact of food waste (FW) composition on co-fermentation performance was studied to elucidate if adjusting FW composition can be used to drive the fermentation yield and profile, which is relevant for biorefinery applications. First, the impact of individual FW components (i.e., fruit, vegetables, pasta, rice, meat, fish, and cellulose) was assessed. Subsequently, the effect of mixing a protein-rich component and a carbohydrate-rich component was studied (i.e., fish/fruit and fish/cellulose, and meat/rice and meat/vegetable). All experiments were carried out in mesophilic batch assays using waste activated sludge (WAS) as main substrate, the same mixture ratio (70 % WAS +30 % FW on VS basis), and no pH control. Results showed that each FW component had a distinct effect on VFA yield and profile, with protein-rich components reaching the highest VFA yields; 502 and 442 mgCOD/gVS for WAS/Fish and WAS/Meat, respectively. A positive interaction on VFA yield was observed when mixing a protein-rich and a carbohydrate-rich component. This interaction was not proportional to the co-substrates proportion in the mixtures. On the other hand, the VFA profile was clearly driven by the components in the mixture, including both WAS and FW composition. Overall, these results indicate that predicting the VFA yield of WAS/FW co-fermentation is not just related to FW composition, but FW composition could be used to adjust the VFA profile to a certain extent
Techno-economic analysis of forward osmosis pre-concentration before an anaerobic membrane bioreactor: Impact of draw solute and membrane material
This research investigated the impact of draw solute and membrane material on the economic balance of a forward osmosis (FO) system pre-concentrating municipal sewage prior to an anaerobic membrane bioreactor (AnMBR). Eight and three different draw solutes were evaluated for cellulose triacetate (CTA) and polyamide thin film composite (TFC) membranes, respectively. The material of the FO membrane was a key economic driver since the net cost of TFC membrane was substantially lower than the CTA membrane. The draw solute had a moderate impact on the economic balance. The most economically favourable draw solutes were sodium acetate and calcium chloride for the CTA membrane and magnesium chloride for the TFC membrane. The FO + AnMBR performance was modelled for both FO membrane materials and each draw solute considering three FO recoveries (50, 80 and 90%). The estimated COD removal efficiency of the AnMBR was similar regardless of the draw solute and FO membrane material. However, the COD and draw solute concentrations in the permeate and digestate increased as the FO recovery increased. These results highlight that FO membranes with high permselectivity are needed to improve the economic balance of mainstream AnMBR and to ensure the quality of the permeate and digestate
Impact of permeate flux and gas sparging rate on membrane performance and process economics of granular anaerobic membrane bioreactors
This research investigated the impact of permeate flux and gas sparging rate on membrane permeability, dissolved and colloidal organic matter (DCOM) rejection and process economics of granular anaerobic membrane bioreactors (AnMBRs). The goal of the study was to understand how membrane fouling control strategies influence granular AnMBR economics. To this end, short- and long-term filtration tests were performed under different permeate flux and specific gas demand (SGD) conditions. The results showed that flux and SGD conditions had a direct impact on membrane fouling. At normalised fluxes (J20) of 4.4 and 8.7 L mâ2 hâ1 (LMH) the most favourable SGD condition was 0.5 m3 mâ2 hâ1, whereas at J20 of 13.0 and 16.7 LMH the most favourable SGD condition was 1.0 m3 mâ2 hâ1. The flux and the SGD did not have a direct impact on DCOM rejection, with values ranging between 31 and 44%. The three-dimensional excitation-emission matrix fluorescence (3DEEM) spectra showed that protein-like fluorophores were predominant in mixed liquor and permeate samples (67-79%) and were retained by the membrane (39-50%). This suggests that protein-like fluorophores could be an important foulant for these systems. The economic analysis showed that operating the membranes at moderate fluxes (J20 = 7.8 LMH) and SGD (0.5 m3 mâ2 hâ1) could be the most favourable alternative. Finally, a sensitivity analysis illustrated that electricity and membrane cost were the most sensitive economic parameters, which highlights the importance of reducing SGD requirements and improving membrane permeability to reduce costs of granular AnMBRs
Ammoniacal nitrogen recovery from pig slurry using a novel hydrophobic/ hydrophilic selective membrane
The implementation of the circular economy paradigm in intensive pig farming requires technologies able to recover ammoniacal nitrogen from pig slurries. This research explores the feasibility of a novel hydrophobic/ hydrophilic non-porous membrane to recover ammoniacal nitrogen from pig slurry at ambient temperature and using a H2SO4 solution as trapping agent. The influence of (i) the pH of the feed solution, (ii) the volume ratio between feed and trapping solution, and (iii) the trapping solution concentration on nitrogen recovery and flux were evaluated using a synthetic solution and pig slurry. The best performance was achieved when the pH of the feed solution was controlled at 9.0, where average fluxes of 145 and 116 g N/(m2â
day) were achieved for the synthetic solution and pig slurry after 24 h, respectively. Decreasing the feed-to-trapping volume ratio improved the recovery efficiency after 24 h from 62% to 74% for the synthetic solution and from 32% to 46% for pig slurry. However, renewing the H2SO4 concentration of the trapping solution only led to minor improvements despite the higher reagent consumption. The diffusion coefficients of NH3 and NH+4 through the membrane at pH 9.0 were (7.3 ± 0.2)â
10-11 and (2.1 ± 0.1)â
10-11 m2/s for the synthetic solution and (2.7 ± 0.1)â
10-11 and (1.0 ± 0.1)â
10-11 m2/s for the pig slurry, respectively. The capacity of ions to diffuse through the membrane is a distinctive feature of this membrane and allowed recovering 33% of potassium and 21% of phosphate in pig slurry after 24 h
Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review
The application of anaerobic membrane bioreactors (AnMBR) for mainstream municipal sewage treatment is almost ready for full-scale implementation. However, some challenges still need to be addressed to make AnMBR technically and economically feasible. This article presents an updated review of five challenges that currently hinder the implementation of AnMBR technology for mainstream sewage treatment: (i) membrane fouling, (ii) process configuration, (iii) process temperature, (iv) sewage sulphate concentration, and (v) sewage low organics concentration. The gel layer appears to be the main responsible for membrane fouling and flux decline being molecules size and morphology critical properties for its formation. The review also discusses the advantages and disadvantages of five novel AnMBR configurations aiming to optimise fouling control. These include the integration of membrane technology with CSTR or upflow digesters, and the utilisation of scouring particles. Psychrophilic temperatures and high sulphate concentrations are two other limiting factors due to their impact on methane yields and membrane performance. Besides the methane dissolved in the effluent and the competition for organic matter between sulphate reducing bacteria and methanogens, the review examines the impact of temperature on microbial kinetics and community, and their combined effect on AnMBR performance. Finally, the review evaluates the possibility to pre-concentrate municipal sewage by forward osmosis. Sewage pre-concentration is an opportunity to reduce the volumetric flow rate and the dissolved methane losses. Overall, the resolution of these challenges requires a compromise solution considering membrane filtration, anaerobic digestion performance and economic feasibility
Gamma distribution function to understand anaerobic digestion kinetics: Kinetic constants are not constant
The Gamma model is a novel approach to characterise the complex degradation dynamics taking place during anaerobic digestion. This three parameters model results from combining the first-order kinetic model and the Gamma distribution function. In contrast to conventional models, where the kinetic constant is considered invariant, the Gamma model allows analysing the variability of the kinetic constant using a probability density function. The kinetic constant of mono-digestion and co-digestion batch tests of different wastes were modelled using the Gamma model and two common first-order models: one-step one-fraction model and one-step two-fraction model. The Gamma distribution function approximates three distinct probability density functions, i.e. exponential, log-normal, and delta Dirac. Specifically, (i) cattle paunch and pig manure approximated a log-normal distribution; (ii) cattle manure and microalgae approximated an exponential distribution, and (iii) primary sludge and cellulose approximated a delta Dirac distribution. The Gamma model was able to characterise two distinct waste activated sludge, one approximated to a log-normal distribution and the other to an exponential distribution. The same cellulose was tested with two different inocula; in both tests, the Gamma distribution function approximated a delta Dirac function but with a different kinetic value. The potential and consistency of Gamma model were also evident when analysing pig manure and microalgae co-digestion batch tests since (i) the mean k of the co-digestion tests were within the values of the mono-digestion tests, and (ii) the profile of the density function transitioned from log-normal to exponential distribution as the percentage of microalgae in the mixture increased