15 research outputs found

    Sediment removal by prairie filter strips in row-cropped ephemeral watersheds

    Get PDF
    Twelve small watersheds in central Iowa were used to evaluate the effectiveness of prairie filter strips (PFS) in trapping sediment from agricultural runoff. Four treatments with PFS of different size and location (100% rowcrop, 10% PFS of total watershed area at footslope, 10% PFS at footslope and in contour strips, 20% PFS at footslope and in contour strips) arranged in a balanced incomplete block design were seeded in July 2007. All watersheds were in bromegrass ( L.) for at least 10 yr before treatment establishment. Cropped areas were managed under a no-till, 2-yr corn ( L.)-soybean [ (L.) Merr.] rotation beginning in 2007. About 38 to 85% of the total sediment export from cropland occurred during the early growth stage of rowcrop due to wet field conditions and poor ground cover. The greatest sediment load was observed in 2008 due to the initial soil disturbance and gradually decreased thereafter. The mean annual sediment yield through 2010 was 0.36 and 8.30 Mg ha for the watersheds with and without PFS, respectively, a 96% sediment trapping efficiency for the 4-yr study period. The amount and distribution of PFS had no significant impact on runoff and sediment yield, probably due to the relatively large width (37-78 m) of footslope PFS. The findings suggest that incorporation of PFS at the footslope position of annual rowcrop systems provides an effective approach to reducing sediment loss in runoff from agricultural watersheds under a no-till system

    Perennial Filter Strips Reduce Nitrate Levels in Soil and Shallow Groundwater after Grassland-to-Cropland Conversion

    Get PDF
    Many croplands planted to perennial grasses under the Conservation Reserve Program are being returned to crop production, and with potential consequences for water quality. The objective of this study was to quantify the impact of grassland-to-cropland conversion on nitrate-nitrogen (NO3–N) concentrations in soil and shallow groundwater and to assess the potential for perennial filter strips (PFS) to mitigate increases in NO3–N levels. The study, conducted at the Neal Smith National Wildlife Refuge (NSNWR) in central Iowa, consisted of a balanced incomplete block design with 12 watersheds and four watershed-scale treatments having different proportions and topographic positions of PFS planted in native prairie grasses: 100% rowcrop, 10% PFS (toeslope position), 10% PFS (distributed on toe and as contour strips), and 20% PFS (distributed on toe and as contour strips). All treatments were established in fall 2006 on watersheds that were under bromegrass (Bromus L.) cover for at least 10 yr. Nonperennial areas were maintained under a no-till 2-yr corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] rotation since spring 2007. Suction lysimeter and shallow groundwater wells located at upslope and toeslope positions were sampled monthly during the growing season to determine NO3–N concentration from 2005 to 2008. The results indicated significant increases in NO3–N concentration in soil and groundwater following grassland-to-cropland conversion. Nitrate-nitrogen levels in the vadose zone and groundwater under PFS were lower compared with 100% cropland, with the most significant differences occurring at the toeslope position. During the years following conversion, PFS mitigated increases in subsurface nitrate, but long-term monitoring is needed to observe and understand the full response to land-use conversion

    The current state of the use of large wood in river restoration and management

    Get PDF
    Trees fall naturally into rivers generating flow heterogeneity, inducing geomorphological features, and creating habitats for biota. Wood is increasingly used in restoration projects and the potential of wood acting as leaky barriers to deliver natural flood management by “slowing the flow” is recognised. However, wood in rivers can pose a risk to infrastructure and locally increase flood hazards. The aim of this paper is to provide an up-to-date summary of the benefits and risks associated with using wood to promote geomorphological processes to restore and manage rivers. This summary was developed through a workshop that brought together academics, river managers, restoration practitioners and consultants in the UK to share science and best-practice on wood in rivers. A consensus was developed on four key issues: (i) hydro-geomorphological effects, (ii) current use in restoration and management, (iii) uncertainties and risks, and (iv) tools and guidance required to inform process-based restoration and management

    A design aid for determining width of filter strips

    Full text link

    Dissolved organic carbon in soil solutions: a comparison of collection methods

    Get PDF
    A field study was undertaken to compare the DOC concentrations in soil solutions obtained with three different sampling methods over a range of soil types. The sampling devices were a tension-free collector, a tension Prenart collector and a tension Rhizon collector. Samples were collected fortnightly for a year at seven sites in northern England, each collection being replicated three times. The soil solution DOC ranged from 1.3 gm-3 in an acid ranker to 34.7 gm-3 in a peat. The DOC concentrations obtained with the three methods were reasonably well correlated (r2 of 0.6 to 0.8) but with an indication of bias, as the best fit line differed from the 1:1 line. The tension-free collector gave generally higher DOC concentrations except at very low concentrations (in the acid ranker soil). The DOC concentrations measured with the tension-free collectors were significantly (p < 0.05) higher those obtained with Prenart and Rhizon collectors at four and six sites, out of seven, respectively. Subsequent laboratory tests on tension-free collected samples showed no DOC loss on filtration through 0.1 and 0.22-m membranes, whereas a significant loss of DOC occurred when tension-free collected samples were subsequently passed through Prenart and Rhizon collectors, indicating a probable sampling artefact with the tension devices. The difficulties of acquiring representative soil solution samples are discussed, together with the advantages and disadvantages of tension and tension-free methods
    corecore