240 research outputs found

    Observation and Modeling of Coronal "Moss" With the EUV Imaging Spectrometer on Hinode

    Full text link
    Observations of transition region emission in solar active regions represent a powerful tool for determining the properties of hot coronal loops. In this Letter we present the analysis of new observations of active region moss taken with the Extreme Ultraviolet Imaging Spectrometer (EIS) on the \textit{Hinode} mission. We find that the intensities predicted by steady, uniformly heated loop models are too intense relative to the observations, consistent with previous work. To bring the model into agreement with the observations a filling factor of about 16% is required. Furthermore, our analysis indicates that the filling factor in the moss is nonuniform and varies inversely with the loop pressure

    Chromospheric explosions

    Get PDF
    Three issues relative to chromospheric explosions were debated. (1) Resolved: The blue-shifted components of x-ray spectral lines are signatures of chromospheric evaporation. It was concluded that the plasma rising with the corona is indeed the primary source of thermal plasma observed in the corona during flares. (2) Resolved: The excess line broading of UV and X-ray lines is accounted for by a convective velocity distribution in evaporation. It is concluded that the hypothesis that convective evaporation produces the observed X-ray line widths in flares is no more than a hypothesis. It is not supported by any self-consistent physical theory. (3) Resolved: Most chromospheric heating is driven by electron beams. Although it is possible to cast doubt on many lines of evidence for electron beams in the chromosphere, a balanced view that debaters on both sides of the question might agree to is that electron beams probably heat the low corona and upper chromosphere, but their direct impact on evaporating the chromosphere is energetically unimportant when compared to conduction. This represents a major departure from the thick-target flare models that were popular before the Workshop

    Transition region features observed with Hinode/EIS

    Full text link
    Two types of active region feature prominent at transition region temperatures are identified in Hinode/EIS data of AR 10938 taken on 2007 January 20. The footpoints of 1 MK TRACE loops are shown to emit strongly in emission lines formed at log T=5.4-5.8, allowing the temperature increase along the footpoints to be clearly seen. A density diagnostic of Mg VII yields the density in the footpoints, with one loop showing a decrease from 3x10^9 cm^-3 at the base to 1.5x10^9 cm^-3 at a projected height of 20 Mm. The second feature is a compact active region transition region brightening which is particularly intense in O V emission (log T=5.4) but also has a signature at temperatures up to log T=6.3. The Mg VII diagnostic gives a density of 4x10^10 cm^-3, and emission lines of Mg VI and Mg VII show line profiles broadened by 50 km/s and wings extending beyond 200 km/s. Continuum emission in the short wavelength band is also found to be enhanced, and is suggested to be free-bound emission from recombination onto He^+.Comment: 11 pages, 9 figures, submitted to PASJ Hinode first results issu

    Fe VII lines in the spectrum of RR Telescopii

    Full text link
    Thirteen transitions within the ground 3d^2 configuration of Fe VII are identified in ultraviolet and optical spectra of the symbiotic star RR Telescopii obtained with the STIS instrument of the Hubble Space Telescope. The line fluxes are compared with theoretical data computed with the recent atomic data of K.A. Berrington et al., and high resolution optical spectra from VLT/UVES are used to identify blends. Seven branching ratios are measured, with three in good agreement with theory and one affected by blending. The lambda5277/lambda4943 branching ratio is discrepant by > 3 sigma, indicating errors in the atomic data for the lambda5277 line. A least-squares minimization scheme is used to simultaneously derive the temperature, T, and density, N_e, of the RR Tel nebula, and the interstellar extinction, E(B-V), towards RR Tel from the complete set of emission lines. The derived values are: log T/K = 4.50 +/- 0.23, log N_e/cm^-3=7.25 +/- 0.05, and E(B-V)<0.27. The extinction is not well-constrained by the Fe VII lines, but is consistent with the more accurate value E(B-V)=0.109^{+0.052}_{-0.059} derived here from the Ne V lambda2974/lambda1574 ratio in the STIS spectrum. Large differences between the K.A. Berrington et al. electron excitation data and the earlier F.P. Keenan & P.H. Norrington data-set are demonstrated, and the latter is shown to give worse agreement with observations.Comment: To be published in Astronomy & Astrophysics; 7 pages, 4 figure
    • …
    corecore