5 research outputs found

    Dipeptidyl peptidase-1 inhibition in patients hospitalised with COVID-19: a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial

    Get PDF
    Background Neutrophil serine proteases are involved in the pathogenesis of COVID-19 and increased serine protease activity has been reported in severe and fatal infection. We investigated whether brensocatib, an inhibitor of dipeptidyl peptidase-1 (DPP-1; an enzyme responsible for the activation of neutrophil serine proteases), would improve outcomes in patients hospitalised with COVID-19. Methods In a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial, across 14 hospitals in the UK, patients aged 16 years and older who were hospitalised with COVID-19 and had at least one risk factor for severe disease were randomly assigned 1:1, within 96 h of hospital admission, to once-daily brensocatib 25 mg or placebo orally for 28 days. Patients were randomly assigned via a central web-based randomisation system (TruST). Randomisation was stratified by site and age (65 years or ≥65 years), and within each stratum, blocks were of random sizes of two, four, or six patients. Participants in both groups continued to receive other therapies required to manage their condition. Participants, study staff, and investigators were masked to the study assignment. The primary outcome was the 7-point WHO ordinal scale for clinical status at day 29 after random assignment. The intention-to-treat population included all patients who were randomly assigned and met the enrolment criteria. The safety population included all participants who received at least one dose of study medication. This study was registered with the ISRCTN registry, ISRCTN30564012. Findings Between June 5, 2020, and Jan 25, 2021, 406 patients were randomly assigned to brensocatib or placebo; 192 (47·3%) to the brensocatib group and 214 (52·7%) to the placebo group. Two participants were excluded after being randomly assigned in the brensocatib group (214 patients included in the placebo group and 190 included in the brensocatib group in the intention-to-treat population). Primary outcome data was unavailable for six patients (three in the brensocatib group and three in the placebo group). Patients in the brensocatib group had worse clinical status at day 29 after being randomly assigned than those in the placebo group (adjusted odds ratio 0·72 [95% CI 0·57–0·92]). Prespecified subgroup analyses of the primary outcome supported the primary results. 185 participants reported at least one adverse event; 99 (46%) in the placebo group and 86 (45%) in the brensocatib group. The most common adverse events were gastrointestinal disorders and infections. One death in the placebo group was judged as possibly related to study drug. Interpretation Brensocatib treatment did not improve clinical status at day 29 in patients hospitalised with COVID-19

    Dynamic relationship between IFN-gamma and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load

    No full text
    Distinct IFN-gamma and IL-2 profiles of Ag-specific CD4(+) T cells have recently been associated with different clinical disease states and Ag loads in viral infections. We assessed the kinetics and functional profile of Mycobacterium tuberculosis Ag-specific T cells secreting IFN-gamma and IL-2 in 23 patients with untreated active tuberculosis when bacterial and Ag loads are high and after curative treatment, when Ag load is reduced. The frequencies of M. tuberculosis Ag-specific IFN-gamma-secreting T cells declined during 28 mo of follow-up with an average percentage decline of 5.8% per year (p = 0.005), while the frequencies of Ag-specific IL-2-secreting T cells increased during treatment (p = 0.02). These contrasting dynamics for the two cytokines led to a progressive convergence of the frequencies of IFN-gamma- and IL-2-secreting cells over 28 mo. Simultaneous measurement of IFN-gamma and IL-2 secretion at the single-cell level revealed a codominance of IFN-gamma-only secreting and IFN-gamma/IL-2 dual secreting CD4(+) T cells in active disease that shifted to dominance of IFN-gamma/IL-2-secreting CD4(+) T cells and newly detectable IL-2-only secreting CD4(+) T cells during and after treatment. These distinct T cell functional signatures before and after treatment suggest a novel immunological marker of mycobacterial load and clinical status in tuberculosis that now requires validation in larger prospective studies

    Improved diagnostic evaluation of suspected tuberculosis

    No full text
    Background: The role of new T-cell–based blood tests for tuberculosis in the diagnosis of active tuberculosis is unclear.Objective: To compare the performance of 2 interferon-? assays and tuberculin skin testing in adults with suspected tuberculosis.Design: Prospective study conducted in routine practice.Setting: 2 urban hospitals in the United Kingdom.Patients: 389 adults, predominantly of South Asian and black ethnicity, with moderate to high clinical suspicion of active tuberculosis.Intervention: Tuberculin skin testing, the enzyme-linked immunospot assay (ELISpot) incorporating early secretory antigenic target-6 and culture filtrate protein-10 (standard ELISpot), and ELISpot incorporating a novel antigen, Rv3879c (ELISpotPLUS) were performed during diagnostic assessment by independent persons who were blinded to results of the other test.Measurements: Sensitivity, specificity, predictive values, and likelihood ratios.Results: 194 patients had a final diagnosis of active tuberculosis, of which 79% were culture-confirmed. Sensitivity for culture confirmed and highly probable tuberculosis was 89% (95% CI, 84% to 93%) with ELISpotPLUS, 85% (CI, 79% to 90%) with standard ELISpot, 79% (CI, 72% to 85%) with 15-mm threshold tuberculin skin testing, and 83% (CI, 77% to 89%) with stratified thresholds of 15 and 10 mm in vaccinated and unvaccinated patients, respectively. The ELISpotPLUS assay was more sensitive than tuberculin skin testing with 15-mm cutoff points (P = 0.01) but not with stratified cutoff points (P = 0.10). The ELISpotPLUS assay had 4% higher diagnostic sensitivity than standard ELISpot (P = 0.02). Combined sensitivity of ELISpotPLUS and tuberculin skin testing was 99% (CI, 95% to 100%), conferring a negative likelihood ratio of 0.02 (CI, 0 to 0.06) when both test results were negative.Limitations: Local standards for tuberculin skin testing differed from others used internationally. The study sample included few immunosuppressed patients.Conclusion: The ELISpotPLUS assay is more sensitive than standard ELISpot and, when used in combination with tuberculin skin testing, enables rapid exclusion of active infection in patients with moderate to high pretest probability of tuberculosis

    Evolutionary algorithms for practical sensor fault tolerant control

    Get PDF
    The Shaky Hand is a multi-input, multi-output laboratory demonstrator which is modelled on a village fete game. In the original, the aim is to guide, by hand, a wire loop along a wire which has been bent to form a meandering track, 'without touching the loop to the wire. In the original game, touching the hand-held loop against the wire track sets off a loud warning bell and the player loses. The thesis presents the research work associated with the quest for practical solutions to a generic problem: the correct operation of a fallible system. The work covers three distinct areas: modelling of the demonstrator, design and construction of a physical system, and evoiution of algorithms for control of the demonstrator in practice in the presence of sensor faults, using Cartesian Genetic Programming (CGP). The third area forms the core of the thesis. The key challenges in creating the virtual environment to train for generic sensor fault tolerant algorithms are considered and addressed. The evolved algorithms are analysed and then verified using the demonstrator in practice. The practical results showed that sensor fault tolerant control was successfully achieved

    Nebulised interferon-β1a (SNG001) in hospitalised COVID-19: SPRINTER phase III study

    No full text
    Background Despite the availability of vaccines and therapies, patients are being hospitalised with coronavirus disease 2019 (COVID-19). Interferon (IFN)-β is a naturally occurring protein that stimulates host immune responses against most viruses, including severe acute respiratory syndrome coronavirus 2. SNG001 is a recombinant IFN-β1a formulation delivered to the lungs via nebuliser. SPRINTER assessed the efficacy and safety of SNG001 in adults hospitalised due to COVID-19 who required oxygen via nasal prongs or mask. Methods Patients were randomised double-blind to SNG001 (n=309) or placebo (n=314) once daily for 14 days plus standard of care (SoC). The primary objective was to evaluate recovery after administration of SNG001 versus placebo, in terms of times to hospital discharge and recovery to no limitation of activity. Key secondary end-points were progression to severe disease or death, progression to intubation or death and death. Results Median time to hospital discharge was 7.0 and 8.0 days with SNG001 and placebo, respectively (hazard ratio (HR) 1.06 (95% CI 0.89–1.27); p=0.51); time to recovery was 25.0 days in both groups (HR 1.02 (95% CI 0.81–1.28); p=0.89). There were no significant SNG001–placebo differences for the key secondary end-points, with a 25.7% relative risk reduction in progression to severe disease or death (10.7% and 14.4%, respectively; OR 0.71 (95% CI 0.44–1.15); p=0.161). Serious adverse events were reported by 12.6% and 18.2% patients with SNG001 and placebo, respectively. Conclusions Although the primary objective of the study was not met, SNG001 had a favourable safety profile, and the key secondary end-points analysis suggested that SNG001 may have prevented progression to severe disease
    corecore