85 research outputs found

    Coarse Graining of Nonbonded Inter-particle Potentials Using Automatic Simplex Optimization to Fit Structural Properties

    Full text link
    We implemented a coarse-graining procedure to construct mesoscopic models of complex molecules. The final aim is to obtain better results on properties depending on slow modes of the molecules. Therefore the number of particles considered in molecular dynamics simulations is reduced while conserving as many properties of the original substance as possible. We address the problem of finding nonbonded interaction parameters which reproduce structural properties from experiment or atomistic simulations. The approach consists of optimizing automatically nonbonded parameters using the simplex algorithm to fit structural properties like the radial distribution function as target functions. Moreover, any mix of structural and thermodynamic properties can be included in the target function. Different spherically symmetric inter-particle potentials are discussed. Besides demonstrating the method for Lennard--Jones liquids, it is applied to several more complex molecular liquids such as diphenyl carbonate, tetrahydrofurane, and monomers of poly(isoprene).Comment: 24 pages, 3 tables, 14 figures submitted to the Journal of Chemical Physics (JCP

    Evidence for size-dependent mechanical properties from simulations of nanoscopic polymeric structures

    Full text link
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder

    Thermal Degradation of Adsorbed Bottle-Brush Macromolecules: Molecular Dynamics Simulation

    Full text link
    The scission kinetics of bottle-brush molecules in solution and on an adhesive substrate is modeled by means of Molecular Dynamics simulation with Langevin thermostat. Our macromolecules comprise a long flexible polymer backbone with LL segments, consisting of breakable bonds, along with two side chains of length NN, tethered to each segment of the backbone. In agreement with recent experiments and theoretical predictions, we find that bond cleavage is significantly enhanced on a strongly attractive substrate even though the chemical nature of the bonds remains thereby unchanged. We find that the mean bond life time decreases upon adsorption by more than an order of magnitude even for brush molecules with comparatively short side chains $N=1 \div 4$. The distribution of scission probability along the bonds of the backbone is found to be rather sensitive regarding the interplay between length and grafting density of side chains. The life time declines with growing contour length LL as L0.17\propto L^{-0.17}, and with side chain length as N0.53\propto N^{-0.53}. The probability distribution of fragment lengths at different times agrees well with experimental observations. The variation of the mean length L(t)L(t) of the fragments with elapsed time confirms the notion of the thermal degradation process as a first order reaction.Comment: 15 pages, 7 figure

    RaKUn: Rank-based Keyword extraction via Unsupervised learning and Meta vertex aggregation

    Full text link
    Keyword extraction is used for summarizing the content of a document and supports efficient document retrieval, and is as such an indispensable part of modern text-based systems. We explore how load centrality, a graph-theoretic measure applied to graphs derived from a given text can be used to efficiently identify and rank keywords. Introducing meta vertices (aggregates of existing vertices) and systematic redundancy filters, the proposed method performs on par with state-of-the-art for the keyword extraction task on 14 diverse datasets. The proposed method is unsupervised, interpretable and can also be used for document visualization.Comment: The final authenticated publication is available online at https://doi.org/10.1007/978-3-030-31372-2_2

    Nonlinearity of Mechanochemical Motions in Motor Proteins

    Get PDF
    The assumption of linear response of protein molecules to thermal noise or structural perturbations, such as ligand binding or detachment, is broadly used in the studies of protein dynamics. Conformational motions in proteins are traditionally analyzed in terms of normal modes and experimental data on thermal fluctuations in such macromolecules is also usually interpreted in terms of the excitation of normal modes. We have chosen two important protein motors - myosin V and kinesin KIF1A - and performed numerical investigations of their conformational relaxation properties within the coarse-grained elastic network approximation. We have found that the linearity assumption is deficient for ligand-induced conformational motions and can even be violated for characteristic thermal fluctuations. The deficiency is particularly pronounced in KIF1A where the normal mode description fails completely in describing functional mechanochemical motions. These results indicate that important assumptions of the theory of protein dynamics may need to be reconsidered. Neither a single normal mode, nor a superposition of such modes yield an approximation of strongly nonlinear dynamics.Comment: 10 pages, 6 figure

    Characterization of the Channel Constriction Allowing the Access of the Substrate to the Active Site of Yeast Oxidosqualene Cyclase

    Get PDF
    In oxidosqualene cyclases (OSCs), an enzyme which has been extensively studied as a target for hypocholesterolemic or antifungal drugs, a lipophilic channel connects the surface of the protein with the active site cavity. Active site and channel are separated by a narrow constriction operating as a mobile gate for the substrate passage. In Saccharomyces cerevisiae OSC, two aminoacidic residues of the channel/constriction apparatus, Ala525 and Glu526, were previously showed as critical for maintaining the enzyme functionality. In this work sixteen novel mutants, each bearing a substitution at or around the channel constrictions, were tested for their enzymatic activity. Modelling studies showed that the most functionality-lowering substitutions deeply alter the H-bond network involving the channel/constriction apparatus. A rotation of Tyr239 is proposed as part of the mechanism permitting the access of the substrate to the active site. The inhibition of OSC by squalene was used as a tool for understanding whether the residues under study are involved in a pre-catalytic selection and docking of the substrate oxidosqualene

    Specialized dynamical properties of promiscuous residues revealed by simulated conformational ensembles

    Get PDF
    The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein-protein interaction prediction and design methods. © 2013 American Chemical Society

    Functional clustering of yeast proteins from the protein-protein interaction network

    Get PDF
    BACKGROUND: The abundant data available for protein interaction networks have not yet been fully understood. New types of analyses are needed to reveal organizational principles of these networks to investigate the details of functional and regulatory clusters of proteins. RESULTS: In the present work, individual clusters identified by an eigenmode analysis of the connectivity matrix of the protein-protein interaction network in yeast are investigated for possible functional relationships among the members of the cluster. With our functional clustering we have successfully predicted several new protein-protein interactions that indeed have been reported recently. CONCLUSION: Eigenmode analysis of the entire connectivity matrix yields both a global and a detailed view of the network. We have shown that the eigenmode clustering not only is guided by the number of proteins with which each protein interacts, but also leads to functional clustering that can be applied to predict new protein interactions

    Prediction of Mechanical Properties of Polymers With Various Force Fields

    Get PDF
    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide
    corecore