1,426 research outputs found

    Cross-Modal Health State Estimation

    Full text link
    Individuals create and consume more diverse data about themselves today than any time in history. Sources of this data include wearable devices, images, social media, geospatial information and more. A tremendous opportunity rests within cross-modal data analysis that leverages existing domain knowledge methods to understand and guide human health. Especially in chronic diseases, current medical practice uses a combination of sparse hospital based biological metrics (blood tests, expensive imaging, etc.) to understand the evolving health status of an individual. Future health systems must integrate data created at the individual level to better understand health status perpetually, especially in a cybernetic framework. In this work we fuse multiple user created and open source data streams along with established biomedical domain knowledge to give two types of quantitative state estimates of cardiovascular health. First, we use wearable devices to calculate cardiorespiratory fitness (CRF), a known quantitative leading predictor of heart disease which is not routinely collected in clinical settings. Second, we estimate inherent genetic traits, living environmental risks, circadian rhythm, and biological metrics from a diverse dataset. Our experimental results on 24 subjects demonstrate how multi-modal data can provide personalized health insight. Understanding the dynamic nature of health status will pave the way for better health based recommendation engines, better clinical decision making and positive lifestyle changes.Comment: Accepted to ACM Multimedia 2018 Conference - Brave New Ideas, Seoul, Korea, ACM ISBN 978-1-4503-5665-7/18/1

    Nucleation and Growth of the Superconducting Phase in the Presence of a Current

    Full text link
    We study the localized stationary solutions of the one-dimensional time-dependent Ginzburg-Landau equations in the presence of a current. These threshold perturbations separate undercritical perturbations which return to the normal phase from overcritical perturbations which lead to the superconducting phase. Careful numerical work in the small-current limit shows that the amplitude of these solutions is exponentially small in the current; we provide an approximate analysis which captures this behavior. As the current is increased toward the stall current J*, the width of these solutions diverges resulting in widely separated normal-superconducting interfaces. We map out numerically the dependence of J* on u (a parameter characterizing the material) and use asymptotic analysis to derive the behaviors for large u (J* ~ u^-1/4) and small u (J -> J_c, the critical deparing current), which agree with the numerical work in these regimes. For currents other than J* the interface moves, and in this case we study the interface velocity as a function of u and J. We find that the velocities are bounded both as J -> 0 and as J -> J_c, contrary to previous claims.Comment: 13 pages, 10 figures, Revte

    Squeezing superfluid from a stone: Coupling superfluidity and elasticity in a supersolid

    Full text link
    In this work we start from the assumption that normal solid to supersolid (NS-SS) phase transition is continuous, and develop a phenomenological Landau theory of the transition in which superfluidity is coupled to the elasticity of the crystalline 4^4He lattice. We find that the elasticity does not affect the universal properties of the superfluid transition, so that in an unstressed crystal the well-known λ\lambda-anomaly in the heat capacity of the superfluid transition should also appear at the NS-SS transition. We also find that the onset of supersolidity leads to anomalies in the elastic constants near the transition; conversely, inhomogeneous strains in the lattice can induce local variations of the superfluid transition temperature, leading to a broadened transition.Comment: 4 page

    Electron Beam Cured Epoxy Resin Composites for High Temperature Applications

    Get PDF
    Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program

    A Self-Consistent Microscopic Theory of Surface Superconductivity

    Full text link
    The electronic structure of the superconducting surface sheath in a type-II superconductor in magnetic fields Hc2<H<Hc3H_{c2}<H<H_{c3} is calculated self-consistently using the Bogoliubov-de Gennes equations. We find that the pair potential Δ(x)\Delta(x) exhibits pronounced Friedel oscillations near the surface, in marked contrast with the results of Ginzburg-Landau theory. The role of magnetic edge states is emphasized. The local density of states near the surface shows a significant depletion near the Fermi energy due to the development of local superconducting order. We suggest that this structure could be unveiled by scanning-tunneling microscopy studies performed near the edge of a superconducting sample.Comment: 12 pages, Revtex 3.0, 3 postscript figures appende

    On minimal extensions of rings

    Full text link
    Given two rings R⊆SR \subseteq S, SS is said to be a minimal ring extension of RR if RR is a maximal subring of SS. In this article, we study minimal extensions of an arbitrary ring RR, with particular focus on those possessing nonzero ideals that intersect RR trivially. We will also classify the minimal ring extensions of prime rings, generalizing results of Dobbs, Dobbs & Shapiro, and Ferrand & Olivier on commutative minimal extensions.Comment: 25 page

    Flux penetration in slab shaped Type-I superconductors

    Full text link
    We study the problem of flux penetration into type--I superconductors with high demagnetization factor (slab geometry).Assuming that the interface between the normal and superconducting regions is sharp, that flux diffuses rapidly in the normal regions, and that thermal effects are negligible, we analyze the process by which flux invades the sample as the applied field is increased slowly from zero.We find that flux does not penetrate gradually.Rather there is an instability in the process and the flux penetrates from the boundary in a series of bursts, accompanied by the formation of isolated droplets of the normal phase, leading to a multiply connected flux domain structure similar to that seen in experiments.Comment: 4 pages, 2 figures, Fig 2.(b) available upon request from the authors, email - [email protected]

    Superheating fields of superconductors: Asymptotic analysis and numerical results

    Full text link
    The superheated Meissner state in type-I superconductors is studied both analytically and numerically within the framework of Ginzburg-Landau theory. Using the method of matched asymptotic expansions we have developed a systematic expansion for the solutions of the Ginzburg-Landau equations in the limit of small κ\kappa, and have determined the maximum superheating field HshH_{\rm sh} for the existence of the metastable, superheated Meissner state as an expansion in powers of κ1/2\kappa^{1/2}. Our numerical solutions of these equations agree quite well with the asymptotic solutions for κ<0.5\kappa<0.5. The same asymptotic methods are also used to study the stability of the solutions, as well as a modified version of the Ginzburg-Landau equations which incorporates nonlocal electrodynamics. Finally, we compare our numerical results for the superheating field for large-κ\kappa against recent asymptotic results for large-κ\kappa, and again find a close agreement. Our results demonstrate the efficacy of the method of matched asymptotic expansions for dealing with problems in inhomogeneous superconductivity involving boundary layers.Comment: 14 pages, 8 uuencoded figures, Revtex 3.

    Dislocation-induced superfluidity in a model supersolid

    Full text link
    Motivated by recent experiments on the supersolid behavior of 4^4He, we study the effect of an edge dislocation in promoting superfluidity in a Bose crystal. Using Landau theory, we couple the elastic strain field of the dislocation to the superfluid density, and use a linear analysis to show that superfluidity nucleates on the dislocation before occurring in the bulk of the solid. Moving beyond the linear analysis, we develop a systematic perturbation theory in the weakly nonlinear regime, and use this method to integrate out transverse degrees of freedom and derive a one-dimensional Landau equation for the superfluid order parameter. We then extend our analysis to a network of dislocation lines, and derive an XY model for the dislocation network by integrating over fluctuations in the order parameter. Our results show that the ordering temperature for the network has a sensitive dependence on the dislocation density, consistent with numerous experiments that find a clear connection between the sample quality and the supersolid response.Comment: 10 pages, 6 figure
    • …
    corecore