Individuals create and consume more diverse data about themselves today than
any time in history. Sources of this data include wearable devices, images,
social media, geospatial information and more. A tremendous opportunity rests
within cross-modal data analysis that leverages existing domain knowledge
methods to understand and guide human health. Especially in chronic diseases,
current medical practice uses a combination of sparse hospital based biological
metrics (blood tests, expensive imaging, etc.) to understand the evolving
health status of an individual. Future health systems must integrate data
created at the individual level to better understand health status perpetually,
especially in a cybernetic framework. In this work we fuse multiple user
created and open source data streams along with established biomedical domain
knowledge to give two types of quantitative state estimates of cardiovascular
health. First, we use wearable devices to calculate cardiorespiratory fitness
(CRF), a known quantitative leading predictor of heart disease which is not
routinely collected in clinical settings. Second, we estimate inherent genetic
traits, living environmental risks, circadian rhythm, and biological metrics
from a diverse dataset. Our experimental results on 24 subjects demonstrate how
multi-modal data can provide personalized health insight. Understanding the
dynamic nature of health status will pave the way for better health based
recommendation engines, better clinical decision making and positive lifestyle
changes.Comment: Accepted to ACM Multimedia 2018 Conference - Brave New Ideas, Seoul,
Korea, ACM ISBN 978-1-4503-5665-7/18/1