47 research outputs found

    The impact of estimated glomerular filtration rate equations on chronic kidney disease staging in pediatric renal or heart transplant recipients

    Get PDF
    Background: The aim of this study was to evaluate the performance of selected pediatric estimated glomerular filtration rate (eGFR) equations in relation to the clinical management of children after renal or heart transplantation or post-chemotherapy treatment. Methods: This study was a retrospective cross-sectional analysis of 61 children whose glomerular function (GFR) had been determined using a single-dose inulin clearance (iGFR) method. Eight equations for estimating the GFR were evaluated for bias, agreement, accuracy, and clinical stratification. Results: The outcome of all eight eGFR equations differed from the value determined using the iGFR method, with the mean bias ranging from −3.4 to 20.7 ml/min/1.73 m2 and 90 % accuracy ranging from 16 to 26 %. All eGFR equations overestimated renal function in patients with decreased kidney function as determined by the iGFR method and underestimated renal function in patients with normal kidney function. Consequently, based on the eGFR values, patients with low GFR values according to the iGFR method were staged in a less severe chronic kidney disease (CKD) category, and patients with normal GFR values according to the iGFR method were staged in a more severe CKD category. The percentage of correctly classified patients ranged from 32.6 to 41.6 %. Conclusions: In our cohort we found the CKiDIII equation to be the best alternative to calculating the GFR using the inulin clearance method, closely followed by the Hoste and the revised Grubb equations. The performances of all eight eGFR equations assessed were moderate at best and only slightly better than the easy-to-do bedside Schwartz equation

    Eculizumab as rescue therapy for atypical hemolytic uremic syndrome with normal platelet count

    Get PDF
    Item does not contain fulltextBACKGROUND: Atypical hemolytic uremic syndrome (aHUS) in childhood is a rare disease with frequent progression to end-stage renal disease and a high recurrence after kidney transplantation. Eculizumab, a humanized monoclonal antibody that binds to complement protein C5, may be beneficial in the treatment of aHUS. CASE-DIAGNOSIS/TREATMENT: A 6-year-old girl developed aHUS with only slightly elevated C3d (4.4%), no mutations in complement factors, and no antibodies against factor H. Plasma exchange treatment was successful initially, until aHUS recurred. After reinitiating plasma exchange, normalization of the platelet count and improvement of hemolysis occurred, but renal function worsened. Renal function then improved dramatically promptly after the switch to eculizumab. CONCLUSIONS: This case demonstrates that platelet count is not always a reliable marker for improvement of aHUS and that eculizumab can prevent dialysis in plasma-resistant aHUS patients.1 juli 201

    Health-related quality of life of children with first onset steroid-sensitive nephrotic syndrome

    Get PDF
    This study assessed HRQoL and emotional and behavioral difficulties (EBD) and associated variables in children with first onset SSNS. While relapsing steroid-sensitive nephrotic syndrome (SSNS) in children is associated with lower health-related quality of life (HRQoL), little is known about first onset. Four weeks after onset, children (2–16 years) and/or their parents who participated in a randomized placebo-controlled trial, completed the Pediatric Quality of Life Inventory 4.0 (PedsQL) and Strengths and Difficulties Questionnaire (SDQ) to measure HRQoL and EBD, respectively. Total and subscale scores and the proportion of children with impaired HRQoL (&gt; 1 SD below the mean of the reference group) or SDQ clinical scores (&lt; 10th and &gt; 90th percentile) were compared to the Dutch general population (reference group). Regression analyses were used to identify associated variables. Compared to the reference group, children 8–18 years reported significantly lower total HRQoL, and physical and emotional functioning. A large proportion (&gt; 45%) of these children had impaired HRQoL. There were no differences in HRQoL between children 2–7 years and the reference group, except for higher scores on social functioning (5–7 years). Similar proportions of SSNS and reference children scored within the clinical range of SDQ subscales. Age, sex, and steroid side-effects were negatively associated with HRQol and/or EBD. Conclusion: This study showed that HRQoL and EBD are affected in children of different ages with first onset SSNS. This calls for more awareness from healthcare providers and routinely monitoring of HRQoL and EBD in daily clinical care to prevent worsening of symptoms. Clinical trial registry: Netherlands Trial Register (https://trialsearch.who.int/ ; NTR7013), date of registration: 02 June 2018. What is Known: • Health-related quality of life (HRQoL) is lower and emotional and behavioral difficulties (EBD) is more affected in children with frequently-relapsing and steroid-dependent nephrotic syndrome. What is New: • HRQoL and EBD are affected in children with first onset steroid-sensitive nephrotic syndrome compared to a reference group of the Dutch general population. • To what extent HRQoL and EBD are affected depends on the age of the patient.</p

    Childhood Estimates of Glomerular Filtration Rate Based on Creatinine and Cystatin C: Importance of Body Composition

    Get PDF
    __Background:__ Creatinine and cystatin C concentrations are commonly used to estimate glomerular filtration rate (eGFR) in clinical practice and epidemiological studies. To estimate the influence of different body composition measures on eGFR from creatinine and cystatin C blood concentrations, we compared the associations of different anthropometric and body composition measures with eGFR derived from creatinine (eGFRcreat) and cystatin C (eGFRcystC) blood concentrations. __Methods:__ In a population-based cohort study among 4,305 children aged 6.0 years (95% range 5.7-8.0), we measured weight and height and calculated body mass index (BMI) and body surface area (BSA), and lean and fat mass using dual-energy X-ray absorptiometry. At the same age, we measured creatinine and cystatin C blood concentrations and estimated the GFR. __Results:__ Correlation between eGFR based on creatinine and cystatin C concentrations was r = 0.40 (p value <0.01). Higher BMI was associated with lower eGFRcystC but not with eGFRcreat. Higher BSA was associated with higher eGFRcreat and lower eGFRcystC (p value <0.05). Lean and fat mass percentages were associated with eGFRcreat but not with eGFRcystC. __Conclusion:__ Our findings suggest that both eGFRcreat and eGFRcystC are influenced by BMI and BSA. eGFRcreat is more strongly influenced by body composition than eGFRcystC

    Acute kidney injury is a frequent complication in critically ill neonates receiving extracorporeal membrane oxygenation: A 14-year cohort study

    Get PDF
    Introduction: Newborns in need of extracorporeal membrane oxygenation (ECMO) support are at high risk of developing acute kidney injury (AKI). AKI may occur as part of multiple organ failure and can be aggravated by exposure to components of the extracorporeal circuit. AKI necessitates adjustment of dosage of renally eliminated drugs and avoidance of nephrotoxic drugs. We aimed to define systematically the incidence and clinical course of AKI in critically ill neonates receiving ECMO support. Methods: This study reviewed prospectively collected clinical data (including age, diagnosis, ECMO course, and serum creatinine (SCr)) of all ECMO-treated neonates within our institution spanning a 14-year period. AKI was defined by using the Risk, Injury, Failure, Loss of renal function, and End-stage renal disease (RIFLE) classification. SCr data were reviewed per ECMO day and compared with age-specific SCr reference values. Accordingly, patients were assigned to RIFLE categories (Risk, Injury, or Failure as 150%, 200%, or 300% of median SCr reference values). Data are presented as median and interquartile range (IQR) or number and percentage. Results: Of 242 patients included, 179 (74%) survived. Median age at the start o

    Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia

    Get PDF
    Background Magnesium (Mg2+) is an essential ion for cell growth, neuroplasticity and muscle contraction. Blood Mg2+ levels <0.7 mmol/L may cause a heterogeneous clinical phenotype, including muscle cramps and epilepsy and disturbances in K+ and Ca2+ homeostasis. Over the last decade, the genetic origin of several familial forms of hypomagnesaemia has been found. In 2000, mutations in FXYD2, encoding the γ-subunit of the Na+-K+-ATPase, were identified to cause isolated dominant hypomagnesaemia (IDH) in a large Dutch family suffering from hypomagnesaemia, hypocalciuria and chondrocalcinosis. However, no additional patients have been identified since then. Methods Here, two families with hypomagnesaemia and hypocalciuria were screened for mutations in the FXYD2 gene. Moreover, the patients were clinically and genetically characterized. Results We report a p.Gly41Arg FXYD2 mutation in two families with hypomagnesaemia and hypocalciuria. Interestingly, this is the same mutation as was described in the original study. As in the initial family, several patients suffered from muscle cramps, chondrocalcinosis and epilepsy. Haplotype analysis revealed an overlapping haplotype in all families, suggesting a founder effect. Conclusions The recurrent p.Gly41Arg FXYD2 mutation in two new families with IDH confirms that FXYD2 mutation causes hypomagnesaemia. Until now, no other FXYD2 mutations have been reported which could indicate that other FXYD2 mutations will not cause hypomagnesaemia or are embryonically letha

    Modeling complement activation on human glomerular microvascular endothelial cells

    Get PDF
    Introduction: Atypical hemolytic uremic syndrome (aHUS) is a rare kidney disease caused by dysregulation of the complement alternative pathway. The complement dysregulation specifically leads to damage to the glomerular endothelium. To further understand aHUS pathophysiology, we validated an ex vivo model for measuring complement deposition on both control and patient human glomerular microvascular endothelial cells (GMVECs). Methods: Endothelial cells were incubated with human test sera and stained with an anti-C5b-9 antibody to visualize and quantify complement depositions on the cells with immunofluorescence microscopy.Results: First, we showed that zymosan-activated sera resulted in increased endothelial C5b-9 depositions compared to normal human serum (NHS). The levels of C5b-9 depositions were similar between conditionally immortalized (ci)GMVECs and primary control GMVECs. The protocol with ciGMVECs was further validated and we additionally generated ciGMVECs from an aHUS patient. The increased C5b-9 deposition on control ciGMVECs by zymosan-activated serum could be dose-dependently inhibited by adding the C5 inhibitor eculizumab. Next, sera from five aHUS patients were tested on control ciGMVECs. Sera from acute disease phases of all patients showed increased endothelial C5b-9 deposition levels compared to NHS. The remission samples showed normalized C5b-9 depositions, whether remission was reached with or without complement blockage by eculizumab. We also monitored the glomerular endothelial complement deposition of an aHUS patient with a hybrid complement factor H (CFH)/CFH-related 1 gene during follow-up. This patient had already chronic kidney failure and an ongoing deterioration of kidney function despite absence of markers indicating an aHUS flare. Increased C5b-9 depositions on ciGMVECs were observed in all samples obtained throughout different diseases phases, except for the samples with eculizumab levels above target. We then tested the samples on the patient’s own ciGMVECs. The C5b-9 deposition pattern was comparable and these aHUS patient ciGMVECs also responded similar to NHS as control ciGMVECs. Discussion: In conclusion, we demonstrate a robust and reliable model to adequately measure C5b-9-based complement deposition on human control and patient ciGMVECs. This model can be used to study the pathophysiological mechanisms of aHUS or other diseases associated with endothelial complement activation ex vivo.</p

    Long-term follow-up including extensive complement analysis of a pediatric C3 glomerulopathy cohort

    Get PDF
    BACKGROUND: C3 glomerulopathy (C3G) is a rare kidney disorder characterized by predominant glomerular depositions of complement C3. C3G can be subdivided into dense deposit disease (DDD) and C3 glomerulonephritis (C3GN). This study describes the long-term follow-up with extensive complement analysis of 29 Dutch children with C3G. METHODS: Twenty-nine C3G patients (19 DDD, 10 C3GN) diagnosed between 1992 and 2014 were included. Clinical and laboratory findings were collected at presentation and during follow-up. Specialized assays were used to detect rare variants in complement genes and measure complement-directed autoantibodies and biomarkers in blood. RESULTS: DDD patients presented with lower estimated glomerular filtration rate (eGFR). C3 nephritic factors (C3NeFs) were detected in 20 patients and remained detectable over time despite immunosuppressive treatment. At presentation, low serum C3 levels were detected in 84% of all patients. During follow-up, in about 50% of patients, all of them C3NeF-positive, C3 levels remained low. Linear mixed model analysis showed that C3GN patients had higher soluble C5b-9 (sC5b-9) and lower properdin levels compared to DDD patients. With a median follow-up of 52 months, an overall benign outcome was observed with only six patients with eGFR below 90 ml/min/1.73 m(2) at last follow-up. CONCLUSIONS: We extensively described clinical and laboratory findings including complement features of an exclusively pediatric C3G cohort. Outcome was relatively benign, persistent low C3 correlated with C3NeF presence, and C3GN was associated with higher sC5b-9 and lower properdin levels. Prospective studies are needed to further elucidate the pathogenic mechanisms underlying C3G and guide personalized medicine with complement therapeutics. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00467-021-05221-6
    corecore