231 research outputs found
Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei
We present self-consistent models of the vertical structure and emergent
spectrum of AGN accretion disks. The central object is assumed to be a
supermassive Kerr black hole. We demonstrate that NLTE effects and the effects
of a self-consistent vertical structure of a disk play a very important role in
determining the emergent radiation, and therefore should be taken into account.
In particular, NLTE models exhibit a largely diminished H I Lyman discontinuity
when compared to LTE models, and the He II discontinuity appears strongly in
emission for NLTE models. Consequently, the number of ionizing photons in the
He II Lyman continuum predicted by NLTE disk models is by 1 - 2 orders of
magnitude higher than that following from the black-body approximation. This
prediction has important implications for ionization models of AGN broad line
regions, and for models of the intergalactic radiation field and the ionization
of helium in the intergalactic medium.Comment: 11 pages; 2 postscript figures; LaTeX, AASPP4 macro; to appear in the
Astrophysical Journal (Letters
Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei. III. Integrated Spectra for Hydrogen-Helium Disks
We have constructed a grid of non-LTE disk models for a wide range of black
hole mass and mass accretion rate, for several values of viscosity parameter
alpha, and for two extreme values of the black hole spin: the maximum-rotation
Kerr black hole, and the Schwarzschild (non-rotating) black hole. Our procedure
calculates self-consistently the vertical structure of all disk annuli together
with the radiation field, without any approximations imposed on the optical
thickness of the disk, and without any ad hoc approximations to the behavior of
the radiation intensity. The total spectrum of a disk is computed by summing
the spectra of the individual annuli, taking into account the general
relativistic transfer function. The grid covers nine values of the black hole
mass between M = 1/8 and 32 billion solar masses with a two-fold increase of
mass for each subsequent value; and eleven values of the mass accretion rate,
each a power of 2 times 1 solar mass/year. The highest value of the accretion
rate corresponds to 0.3 Eddington. We show the vertical structure of individual
annuli within the set of accretion disk models, along with their local emergent
flux, and discuss the internal physical self-consistency of the models. We then
present the full disk-integrated spectra, and discuss a number of
observationally interesting properties of the models, such as
optical/ultraviolet colors, the behavior of the hydrogen Lyman limit region,
polarization, and number of ionizing photons. Our calculations are far from
definitive in terms of the input physics, but generally we find that our models
exhibit rather red optical/UV colors. Flux discontinuities in the region of the
hydrogen Lyman limit are only present in cool, low luminosity models, while
hotter models exhibit blueshifted changes in spectral slope.Comment: 20 pages, 31 figures, ApJ in press, spectral models are available for
downloading at http://www.physics.ucsb.edu/~blaes/habk
Characteristic QSO Accretion Disk Temperatures from Spectroscopic Continuum Variability
Using Sloan Digital Sky Survey (SDSS) quasar spectra taken at multiple
epochs, we find that the composite flux density differences in the rest frame
wavelength range 1300-6000 AA can be fit by a standard thermal accretion disk
model where the accretion rate has changed from one epoch to the next (without
considering additional continuum emission components). The fit to the composite
residual has two free parameters: a normalizing constant and the average
characteristic temperature . In turn the characteristic temperature
is dependent on the ratio of the mass accretion rate to the square of the black
hole mass. We therefore conclude that most of the UV/optical variability may be
due to processes involving the disk, and thus that a significant fraction of
the UV/optical spectrum may come directly from the disk.Comment: 31 pages, 8 figure
The Vertical Structure and Ultraviolet Spectrum of Accretion Disks Heated by Internal Dissipation in Active Galactic Nuclei
We present an improved calculation of the vertical structure and ultraviolet
spectrum of a dissipative accretion disk in an AGN. We calculate model spectra
in which the viscous stress is proportional to the total pressure, the gas
pressure only and the geometric mean of the radiation and gas pressures (cf.
Laor & Netzer 1989: LN89). As a result of a more complete treatment of
absorptive opacity, we find greater overall spectral curvature than did LN89,
as well as larger amplitudes in both the Lyman and HeII photoionization edges.
The local black body approximation is not a good description of the near UV
spectrum. With relativistic corrections (appropriate to non-rotating black
holes) included, we find that the near UV spectrum hardens with increasing
m-dot / m_8 (m-dot is the accretion rate in Eddington units, m_8 the black hole
mass in units of 10^8 M_Sun). The near UV spectrum is consistent with
observations if m-dot/ m_8 \sim 10^{-3}, but disks this cold would have large,
and unobserved, absorption features at the Lyman edge. The edge amplitude is
reduced when m-dot/m_8 is larger, but then the near-UV slope is too hard to
match observations. We conclude that models in which conventional disks orbit
non-rotating black holes do not adequately explain UV continuum production in
AGN.Comment: AAS LaTe
Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control
We present a full-range Fourier-domain optical coherence tomography (OCT) system that is capable of acquiring two-dimensional images of living tissue in a single shot. By using line illumination of the sample in combination with a two-dimensional imaging spectrometer, 1040 depth scans are performed simultaneously on a sub-millisecond timescale. Furthermore, we demonstrate an easy and flexible real-time single-shot technique for full-range (complex-conjugate cancelled) OCT imaging that is compatible with both two-dimensional as well as ultrahighresolution OCT. By implementing a dispersion imbalance between reference and sample arms of the interferometer, we eliminate the complex-conjugate signal through numerical dispersion compensation, effectively increasing the useful depth range by a factor of two. The system allows us to record 6.7 × 3.2 mm images at 5 μm depth resolution in 0.2 ms. Data postprocessing requires only 4 s. We demonstrate the capability of our system by imaging the anterior chamber of a mouse eye in vitro, as well as human skin in vivo. © 2009 Optical Society of America
Implementation of quantum search algorithm using classical Fourier optics
We report on an experiment on Grover's quantum search algorithm showing that
{\em classical waves} can search a -item database as efficiently as quantum
mechanics can. The transverse beam profile of a short laser pulse is processed
iteratively as the pulse bounces back and forth between two mirrors. We
directly observe the sought item being found in iterations, in
the form of a growing intensity peak on this profile. Although the lack of
quantum entanglement limits the {\em size} of our database, our results show
that entanglement is neither necessary for the algorithm itself, nor for its
efficiency.Comment: 4 pages, 3 figures; minor revisions plus extra referenc
Laser-Plasma Interactions Enabled by Emerging Technologies
An overview from the past and an outlook for the future of fundamental
laser-plasma interactions research enabled by emerging laser systems
Self-similarity of contact line depinning from textured surfaces
The mobility of drops on surfaces is important in many biological and industrial processes, but the phenomena governing their adhesion, which is dictated by the morphology of the three-phase contact line, remain unclear. Here we describe a technique for measuring the dynamic behaviour of the three-phase contact line at micron length scales using environmental scanning electron microscopy. We examine a superhydrophobic surface on which a drop’s adhesion is governed by capillary bridges at the receding contact line. We measure the microscale receding contact angle of each bridge and show that the Gibbs criterion is satisfied at the microscale. We reveal a hitherto unknown self-similar depinning mechanism that shows how some hierarchical textures such as lotus leaves lead to reduced pinning, and counter-intuitively, how some lead to increased pinning. We develop a model to predict adhesion force and experimentally verify the model’s broad applicability on both synthetic and natural textured surfaces.National Science Foundation (U.S.) (CAREER Award 0952564)DuPont MIT AllianceNational Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Science Foundation (U.S.) (Award ECS-0335765
Penning-trap measurement of the -value of the electron capture in for the determination of the electron neutrino mass
The investigation of the absolute scale of the effective neutrino mass
remains challenging due to the exclusively weak interaction of neutrinos with
all known particles in the standard model of particle physics. Currently, the
most precise and least model-dependent upper limit on the electron antineutrino
mass is set by the KATRIN experiment from the analysis of the tritium
\b{eta}-decay. Another promising approach is the electron capture in
, which is under investigation using microcalorimetry within
the ECHo and HOLMES collab orations. An independently measured Q-value of this
process is vital for the assessment of systematic uncertainties in the neutrino
mass determination. Here, we report a direct, independent determination of this
-value by measuring the free-space cyclotron frequency ratio of highly
charged ions of and in the Penning trap
experiment \textsc{Pentatrap}. Combining this ratio with atomic physics
calculations of the electronic binding energies yields a -value of
- a more than 50-fold improvement over the
state-of-the-art. This will enable the determination of the electron neutrino
mass on a sub-eV level from the analysis of the electron capture in
- …