43 research outputs found

    Degradation of Cdc25A by \u3b2-TrCP during S phase and in response to DNA damage

    Get PDF
    The Cdc25A phosphatase is essential for cell-cycle progression because of its function in dephosphorylating cyclin-dependent kinases. In response to DNA damage or stalled replication, the ATM and ATR protein kinases activate the checkpoint kinases Chk1 and Chk2, which leads to hyperphosphorylation of Cdc25A1\u20133. These events stimulate the ubiquitin-mediated pro- teolysis of Cdc25A1,4,5 and contribute to delaying cell-cycle progression, thereby preventing genomic instability1\u20137. Here we report that b-TrCP is the F-box protein that targets phosphory- lated Cdc25A for degradation by the Skp1/Cul1/F-box protein complex. Downregulation of b-TrCP1 and b-TrCP2 expression by short interfering RNAs causes an accumulation of Cdc25A in cells progressing through S phase and prevents the degradation of Cdc25A induced by ionizing radiation, indicating that b-TrCP may function in the intra-S-phase checkpoint. Consistent with this hypothesis, suppression of b-TrCP expression results in radioresistant DNA synthesis in response to DNA damage\u2014a phenotype indicative of a defect in the intra-S-phase checkpoint that is associated with an inability to regulate Cdc25A properly. Our results show that b-TrCP has a crucial role in mediating the response to DNA damage through Cdc25A degradation

    Control of chromosome stability by the \u3b2-TrCP\u2013REST\u2013Mad2 axis

    Get PDF
    REST/NRSF (repressor-element-1-silencing transcription factor/ neuron-restrictive silencing factor) negatively regulates the tran- scription of genes containing RE1 sites1,2. REST is expressed in non-neuronal cells and stem/progenitor neuronal cells, in which it inhibits the expression of neuron-specific genes. Overexpression of REST is frequently found in human medulloblastomas and neuroblastomas3\u20137, in which it is thought to maintain the stem character of tumour cells. Neural stem cells forced to express REST and c-Myc fail to differentiate and give rise to tumours in the mouse cerebellum3. Expression of a splice variant of REST that lacks the carboxy terminus has been associated with neuronal tumours and small-cell lung carcinomas8\u201310, and a frameshift mutant (REST-FS), which is also truncated at the C terminus, has oncogenic properties11. Here we show, by using an unbiased screen, that REST is an interactor of the F-box protein b-TrCP. REST is degraded by means of the ubiquitin ligase SCFb-TrCP dur- ing the G2 phase of the cell cycle to allow transcriptional derepres- sion of Mad2, an essential component of the spindle assembly checkpoint. The expression in cultured cells of a stable REST mutant, which is unable to bind b-TrCP, inhibited Mad2 expres- sion and resulted in a phenotype analogous to that observed in Mad21/2 cells. In particular, we observed defects that were con- sistent with faulty activation of the spindle checkpoint, such as shortened mitosis, premature sister-chromatid separation, chro- mosome bridges and mis-segregation in anaphase, tetraploidy, and faster mitotic slippage in the presence of a spindle inhibitor. An indistinguishable phenotype was observed by expressing the oncogenic REST-FS mutant11, which does not bind b-TrCP. Thus, SCFb-TrCP-dependent degradation of REST during G2 permits the optimal activation of the spindle checkpoint, and consequently it is required for the fidelity of mitosis. The high levels of REST or its truncated variants found in certain human tumours may contri- bute to cellular transformation by promoting genomic instability

    mTOR: from growth signal integration to cancer, diabetes and ageing

    Get PDF
    In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.National Institutes of Health (U.S.)Howard Hughes Medical InstituteWhitehead Institute for Biomedical ResearchJane Coffin Childs Memorial Fund for Medical Research (Postdoctoral Fellowship)Human Frontier Science Program (Strasbourg, France

    The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73

    Get PDF
    The transcription factor p73, a member of the p53 family, mediates cell-cycle arrest and apoptosis in response to DNA damage-induced cellular stress, acting thus as a proapoptotic gene. Similar to p53, p73 activity is regulated by post-translational modification, including phosphorylation, acetylation and ubiquitylation. In C. elegans, the F-box protein FSN-1 controls germline apoptosis by regulating CEP-1, the single ancestral p53 family member. Here we report that FBXO45, the human ortholog of FSN-1, binds specifically to p73 triggering its proteasome-dependent degradation. Importantly, SCF(FBXO45) ubiquitylates p73 both in vivo and in vitro. Moreover, siRNA-mediated depletion of FBXO45 stabilizes p73 and concomitantly induces cell death in a p53-independent manner. All together, these results show that the orphan F-box protein FBXO45 regulates the stability of p73, highlighting a conserved pathway evolved from nematode to human by which the p53 members are regulated by an SCF-dependent mechanism

    Functional Delivery of a Cytosolic tRNA into Mutant Mitochondria of Human Cells

    Get PDF
    Many maternally inherited and incurable neuromyopathies are caused by mutations in mitochondrial (mt) transfer RNA (tRNA) genes. Kinetoplastid protozoa, including Leishmania, have evolved specialized systems for importing nucleus-encoded tRNAs into mitochondria. We found that the Leishmania RNA import complex (RIC) could enter human cells by a caveolin-1–dependent pathway, where it induced import of endogenous cytosolic tRNAs, including tRNALys, and restored mitochondrial function in a cybrid harboring a mutant mt tRNALys (MT-TK) gene. The use of protein complexes to modulate mitochondrial function may help in the management of such genetic disorders
    corecore