24 research outputs found

    Impaction of spray droplets on leaves: influence of formulation and leaf character on shatter, bounce and adhesion

    Get PDF
    This paper combines experimental data with simple mathematical models to investigate the influence of spray formulation type and leaf character (wettability) on shatter, bounce and adhesion of droplets impacting with cotton, rice and wheat leaves. Impaction criteria that allow for different angles of the leaf surface and the droplet impact trajectory are presented; their predictions are based on whether combinations of droplet size and velocity lie above or below bounce and shatter boundaries. In the experimental component, real leaves are used, with all their inherent natural variability. Further, commercial agricultural spray nozzles are employed, resulting in a range of droplet characteristics. Given this natural variability, there is broad agreement between the data and predictions. As predicted, the shatter of droplets was found to increase as droplet size and velocity increased, and the surface became harder to wet. Bouncing of droplets occurred most frequently on hard to wet surfaces with high surface tension mixtures. On the other hand, a number of small droplets with low impact velocity were observed to bounce when predicted to lie well within the adhering regime. We believe this discrepancy between the predictions and experimental data could be due to air layer effects that were not taken into account in the current bounce equations. Other discrepancies between experiment and theory are thought to be due to the current assumption of a dry impact surface, whereas, in practice, the leaf surfaces became increasingly covered with fluid throughout the spray test runs.Comment: 19 pages, 6 figures, accepted for publication by Experiments in Fluid

    Segmentation of the C57BL/6J mouse cerebellum in magnetic resonance images

    Get PDF
    The C57BL mouse is the centerpiece of efforts to use gene-targeting technology to understand cerebellar pathology, thus creating a need for a detailed magnetic resonance imaging (MRI) atlas of the cerebellum of this strain. In this study we present a methodology for systematic delineation of the vermal and hemispheric lobules of the C57BL/6J mouse cerebellum in magnetic resonance images. We have successfully delineated 38 cerebellar and cerebellar-related structures. The higher signal-to-noise ratio achieved by group averaging facilitated the identification of anatomical structures. In addition, we have calculated average region volumes and created probabilistic maps for each structure. The segmentation method and the probabilistic maps we have created will provide a foundation for future studies of cerebellar disorders using transgenic mouse models

    Retention and efficacy of ultra-low volume pesticide applications on Culex quinquefasciatus (Diptera: Culicidae)

    No full text
    To combat mosquitoes and the public health hazards they present, spraying chemical adulticides is an efficient and timely control method for immediate reduction of adult populations. With the growing consciousness of environmental and public health concerns, effective mosquito control means not only maximizing the effectiveness (in terms of mosquito mortality rates) of the pesticide application, but also minimizing the unintended effects (health hazard and environmental pollution). A series of experiments was carried out to assess the efficacy and deposition of ultra-low volume (ULV) sprays on adult mosquitoes which included the influence of chemical type, spray volume, spray concentration, droplet size, and deposit location (where the droplets land on the mosquito). A modified Potter Tower was used to apply an extremely fine spray (volume median diameter ∼20\ua0μm) on caged adult mosquitoes (Culex quinquefasciatus). Reslin® (50\ua0g/L bioresmethrin) was diluted in either water or D-C-Tron® plus spray oil (782\ua0g/L paraffinic petroleum oil), Twilight® (89\ua0g/L phenothrin) was diluted in D-C-Tron®, and the mosquito mortality was assessed 24\ua0h after spraying. A fluorescent tracer was added to the spray mixture to determine the amount of spray on mosquitoes. A fluorescent microscope was also used to view the deposit of droplets on mosquitoes. It was found that droplet retention and mortality were reduced with the larger droplet sizes. Large water-based droplets tend to bounce off adult mosquitoes. There is a tendency for droplets approximately 20\ua0μm in size to be retained on the fine hairs on the mosquito. The largest spray deposit was found on the adult mosquito wings and the lowest deposit on the head. Mortality was higher for formulations diluted with oil compared to those diluted with water. ULV applications with ultra-fine sprays (VMD 20\ua0μm) and oil-based products resulted in maximum target efficacy under laboratory conditions, at minimum cost, and with the minimum amount of chemical adulticides

    Modeling the Interaction of Plant Architecture and Spray Techniques

    No full text
    Vegetation type and structure can play an important role in determining the amount of spray that reaches a target as well as the amount of spray moving away from a treated area. In this paper droplet trajectory models and plant architecture models are combined using three-dimensional computer modeling techniques to develop a probabilistic model of turbulence-related spray transport around various plant architectures. The plant architecture model utilises a set of growth rules expressed in the Lindenmayer systems (L-systems) formalism linked to a C++ environmental program to determine the interception of spray droplets by the various vegetative elements. Algorithms have also been introduced to investigate the influence of droplet splash on spray depositio

    农用喷头雾化粒径测试方法比较及分布函数拟合 = Measurement comparison and fitted distribution equation of droplet size for agricultural nozzles

    No full text
    In order to investigate the function expression of droplet size distribution in the spray sheet for agricultural nozzles to improve the pesticide efficacy, some common nozzle types were tested in this study. At present many methods and equipment were used for measuring droplet size. Droplet size is a main parameter influencing the deposition rate and distribution uniformity of pesticide on the target. However, different test results may be caused by different methods or equipment. For selecting a suitable analyzer to test droplet size distribution, three common droplet size analyzers were applied to measure droplet sizes of ST110-03 and ST110-02 nozzles which were standard flat-fan nozzles manufactured by Lechler GmbH. The three analyzers were Particle/Droplet image analysis system, Sympatec HELOS Vario particle size analyzer and Spraytec laser diffraction system and were referred to as PDIA, Sympatec and Spraytec, respectively. Their respective locations were the Institute for Application Techniques in Plant Protection of JKI (Julius Kühn-Institut), Germany, the Centre for Pesticide Application and Safety of the University of Queensland, Australia, and the Centre for Chemicals Application Technology of China Agricultural University, China. For all the sprays in this study, tap water was sprayed at an operating pressure of 0.3 MPa, and each apparatus was operated complying with its corresponding experimental procedure. For each nozzle type, 3 nozzles were tested with three replications. Results showed that absolute results differed between different tests depending on measuring protocol and type of measuring apparatus, but the nozzle classifications were the same, comparing the results with limits of BCPC nozzle classification obtained by PDIA in JKI. Spraytec was more accessible to authors than other analyzers; therefore, it was selected to study the distribution of droplet size. The volume median diameters (VMDs) of air-induction compact nozzles (IDK), standard flat-fan nozzles (ST) and hollow-cone nozzles (TR), with the orifice sizes of 02 and 03 for each type, were measured at different positions in the spray sheet. The nozzles were all produced by Lechler GmbH in Germany. It was found that the VMD distributions were symmetric for all tested nozzles and the axis of symmetry was the centerline of spray sheet. The VMDs of IDK nozzles were significantly larger than other two types'. The coefficient of variation (CV) of droplet sizes, which were tested at different spray heights but the same horizontal position, indicated that the VMDs of IDK nozzles varied with spray height obviously. Meanwhile, at a fixed spray height, the VMD distribution of IDK along the horizontal direction appeared to be W-shaped; the distributions of ST and TR were parabolas. The parabola opening of ST was larger than that of TR. The tested VMD was then fitted with program code using Matlab software based on least square method. In the fitted VMD distribution equation, independent variables were spray height and horizontal position and dependent variable was VMD. The significant relationship between distribution position and VMD was found, the significance threshold α was set at 0.05. Results also showed that the F-statistic calculated from the data of each nozzle was greater than the critical value of the F-distribution for the desired false-rejection probability of 0.05. The coefficient of determination was greater than 0.8 for all fitted equations. All of these pointed that the obtained equations could describe the droplet size distribution correctly and predicate the size at any position in the spray sheet with precision. The fitted function research involved in this paper will provide the valuable basis to study the VMD distribution of overlapped spray sheet for boom sprayer; the study will improve the uniformity of deposition rate and biological efficacy. Meanwhile, the fine droplet zone in the spray sheet is the target of drift control. Therefore, the VMD distribution is also conducive to the development of novel anti-drift sprayer to reduce the risk of pesticide

    A comparison of initial spray characteristics produced by agricultural nozzles

    No full text
    Pesticides are commonly applied by using hydraulic nozzles to generate droplets. The properties of these spray droplets can influence the effectiveness and risks associated with the use of pesticides. Initial spray characteristics (initial droplet size and velocity, fan angle and spray liquid density) were therefore measured for a range of hydraulic nozzles and spray mixtures. Particle Image Velocimetry (PIV) was used to measure the spray sheet velocity.There was a significant difference between a standard hydraulic nozzle, Turbo TeeJet® and air induction nozzle for all measured spray characteristics. The standard hydraulic nozzle generated the smallest droplet sizes, the highest velocity and the highest spray liquid density. The air induction nozzle generated the largest droplet size, the slowest velocity and the lowest spray liquid density. The type of air induction nozzle and spray formulation was also found to influence spray characteristics.This work has demonstrated that initial spray characteristics such as droplet size and velocity, liquid density, fan angle and included air can vary depending on nozzle design, operating parameters and spray formulations. Initial droplet velocity was found to be significantly correlated to droplet size (Dv0.5) and spray pressure

    The EHR's roles in collaboration between providers: A qualitative study.

    No full text
    ObjectiveExamine how the Electronic Health Record (EHR) and its related systems support or inhibit provider collaboration.BackgroundHealth care systems in the US are simultaneously implementing EHRs and transitioning to more collaborative delivery systems; this study examines the interaction between these two changes.MethodsThis qualitative study of five US EHR implementations included 49 interviews and over 60 hours of provider observation. We examined the role of the EHR in building relationships, communicating, coordinating, and collaborative decision-making.ResultsThe EHR plays four roles in collaboration: a repository, a messenger, an orchestrator, and a monitor. While EHR performance varied, common themes were decreased trust due to poor quality documentation, incomplete communication, potential for increased effectiveness through better coordination, and the emerging role of the EHR in identifying performance gaps.ConclusionBoth organizational and technical innovations are needed if the EHR is to truly support collaborative behaviors

    Determining the drift potential of Venturi nozzles compared with standard nozzles across three insecticide spray solutions in a wind tunnel

    No full text
    BACKGROUND: Previous research has sought to adopt the use of drift-reducing technologies (DRTs) for use in field trials to control diamondback moth (DBM) Plutella xylostella (L.) (Lepidoptera: Plutellidae) in canola (Brassica napus L.). Previous studies observed no difference in canopy penetration from fine to coarse sprays, but the coverage was higher for fine sprays. DBM has a strong propensity to avoid sprayed plant material, putting further pressure on selecting technologies that maximise coverage, but often this is at the expense of a greater drift potential. This study aims to examine the addition of a DRT oil that is labelled for control of DBM as well and its effect on the drift potential of the spray solution. The objectives of the study are to quantify the droplet size spectrum and spray drift potential of each nozzle type to select technologies that reduce spray drift, to examine the effect of the insecticide tank mix at both (50 and 100 L ha) application rates on droplet size and spray drift potential across tested nozzle type and to compare the droplet size results of each nozzle by tank mix against the drift potential of each nozzle. RESULTS: The nozzle type affected the drift potential the most, but the spray solution also affected drift potential. The fine spray quality (TCP) resulted in the greatest drift potential (7.2%), whereas the coarse spray quality (AIXR) resulted in the lowest (1.3%), across all spray solutions. The spray solutions mixed at the 100 L ha application volume rate resulted in a higher drift potential than the same products mixed at the 50 L ha mix rate. The addition of the paraffinic DRT oil was significant in reducing the drift potential of Bacillus thuringiensis var. kurstkai (Bt)-only treatments across all tested nozzle types. The reduction in drift potential from the fine spray quality to the coarse spray quality was up to 85%. CONCLUSION: The addition of a DRT oil is an effective way to reduce the spray solution drift potential across all nozzle types and tank mixes evaluated in this study. The greatest reduction in drift potential can be achieved by changing nozzle type, which can reduce the losses of the spray to the surrounding environment. Venturi nozzles greatly reduce the drift potential compared with standard nozzles by as much as 85% across all three insecticide spray solutions. Results suggest that a significant reduction in drift potential can be achieved by changing the nozzle type, and can be achieved without a loss in control of DBM

    Spray retention on whole plants: modelling, simulations and experiments

    No full text
    Retention of sprays on plants is a critical component influencing the effectiveness of agrichemical applications. Previous simulations of spray retention by plants gave poor agreement for hard-to-wet species when compared with actual measured retention. A new model is developed here that accounts for: species wettability, impaction angle, droplet bounce, partial retention on shatter, a variable time to shatter, and the number of daughter droplets produced. The aim of this study was to compare predictions from the new model with data obtained by spraying five mixtures via five nozzles onto easy-to-wet cotton (Gossypium hirsutum L.), and hard-to-wet wheat (Triticum aestivum L.) and fat hen (Chenopodium album L.). The new model correctly predicts retention to be highest on cotton and lowest on wheat. The trend in both measured data and the model predictions is for retention to decrease with increasing droplet size, on all three plant species. Formulation is correctly predicted to have little influence on retention by easy-to-wet cotton plants and to enhance retention by the harder-to-wet wheat and fat hen plants. The parameters that describe partial retention on shatter and variable time to shatter have a substantial influence on retention, as they affect primary or secondary droplet capture. A better understanding of the kinetic energy effects and the interactions between the formulation and the leaf surface are needed to refine their input values
    corecore