38 research outputs found

    Effect of sildenafil on the activity of some antidepressant drugs and electroconvulsive shock treatment in the forced swim test in mice

    Get PDF
    Sildenafil, a potent and selective inhibitor of phosphodiesterase type 5, is used clinically to treat erectile dysfunction and pulmonary arterial hypertension. It is often taken by patients suffering from depression and receiving antidepressant drug treatment. However, its influence on the efficacy of antidepressant treatment was not sufficiently studied. Therefore, the aim of the present study was to investigate the influence of sildenafil on the anti-immobility action of several antidepressant drugs (i.e., sertraline, fluvoxamine, citalopram, maprotiline, trazodone, and agomelatine) as well as on antidepressant-like effect of electroconvulsive stimulations in the forced swim test in mice. The obtained results showed that acute sildenafil treatment enhanced the antidepressant-like activity of all of the studied drugs. The observed effects were not due to the increase in locomotor activity. The interactions between sildenafil and sertraline, maprotiline, and trazodone were pharmacodynamic in nature, as sildenafil did not affect concentrations of these drugs neither in serum nor in brain tissue. Increased concentrations of fluvoxamine, citalopram, and agomelatine in brain tissue evoked by sildenafil co-administration suggest that pharmacokinetic interactions between sildenafil and these drugs are very likely. Sildenafil injected acutely did not alter the antidepressant-like efficacy of electroconvulsive stimulations in mice, as assessed in the forced swim test. Interestingly, repeated (14 days) administration of sildenafil decreased the anti-immobility action of the electroconvulsive stimulations. In conclusion, the present study shows that sildenafil may alter the effectiveness of antidepressant treatment. Further studies are warranted to better characterize the influence of sildenafil on the activity of antidepressant drugs and electroconvulsive therapy

    Antidepressant-like activity of sildenafil following acute and subchronic treatment in the forced swim test in mice : effects of restraint stress and monoamine depletion

    Get PDF
    Sildenafil is a highly effective oral agent for the treatment of erectile dysfunction of multiple etiologies. Although in clinical practice sildenafil is often used in depressed patients, its influence on the pathophysiology of depression remains unclear. The aim of the present study was to evaluate the antidepressant-like activity following acute and subchronic treatment with sildenafil in naïve mice as well as in mice with reserpine- and restraint stress-induced depressive-like behavior. Since corticosterone is released in response to acute stress, we also aimed to assess the influence of sildenafil on serum corticosterone level in non-stressed and stressed animals. The antidepressant activity of sildenafil was assessed in the forced swim test. Corticosterone serum level was determined by using ELISA method, while brain and serum sildenafil level via HPLC method. Sildenafil administered acutely exerted an antidepressant-like effect. Subchronic (14 days) administration of sildenafil resulted only in a weak antidepressant-like effect when evaluated 24 h after the last dose. Acute but not subchronic sildenafil administration reversed the reserpine- and stress-induced immobility in the forced swim test. The lack of effects of sildenafil after subchronic treatment could have been related to its complete elimination from the brain within 24 h from the last injection. Interestingly, acute administration of sildenafil produced a marked increase in serum corticosterone level in both non-stressed and stressed animals. Sildenafil exerts differential effects in the forced swim test after acute and subchronic administration. Further studies on the antidepressant activity of sildenafil are required

    Zebrafish as a robust preclinical platform for screening plant-derived drugs with anticonvulsant properties—a review

    Get PDF
    Traditionally, selected plant sources have been explored for medicines to treat convulsions. This continues today, especially in countries with low-income rates and poor medical systems. However, in the low-income countries, plant extracts and isolated drugs are in high demand due to their good safety profiles. Preclinical studies on animal models of seizures/epilepsy have revealed the anticonvulsant and/or antiepileptogenic properties of, at least some, herb preparations or plant metabolites. Still, there is a significant number of plants known in traditional medicine that exert anticonvulsant activity but have not been evaluated on animal models. Zebrafish is recognized as a suitable in vivo model of epilepsy research and is increasingly used as a screening platform. In this review, the results of selected preclinical studies are summarized to provide credible information for the future development of effective screening methods for plant-derived antiseizure/antiepileptic therapeutics using zebrafish models. We compared zebrafish vs. rodent data to show the translational value of the former in epilepsy research. We also surveyed caveats in methodology. Finally, we proposed a pipeline for screening new anticonvulsant plant-derived drugs in zebrafish (“from tank to bedside and back again”)

    N-Benzyl-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) with hybrid structure as a candidate for a broad-spectrum antiepileptic drug

    Get PDF
    In our recent studies, we identified compound N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) as a broad-spectrum hybrid anticonvulsant which showed potent protection across the most important animal acute seizure models such as the maximal electroshock (MES) test, the subcutaneous pentylenetetrazole (s.c. PTZ) test, and the 6-Hz (32 mA) test in mice. Therefore, AS-1 may be recognized as a candidate for new anticonvulsant effective in different types of human epilepsy with a favorable safety margin profile determined in the rotarod test in mice. In the aim of further pharmacological evaluation of AS-1, in the current study, we examined its activity in the 6-Hz (44 mA) test, which is known as the model of drug-resistant epilepsy. Furthermore, we determined also the antiseizure activity in the kindling model of epilepsy induced by repeated injection of pentylenetetrazole (PTZ) in mice. As a result, AS-1 revealed relatively potent protection in the 6-Hz (44 mA) test, as well as delayed the progression of kindling induced by repeated injection of PTZ in mice at doses of 15 mg/kg, 30 mg/kg, and 60 mg/kg. Importantly, the isobolographic analysis showed that a combination of AS-1 and valproic acid (VPA) at the fixed ratio of 1:1 displayed a supra-additive (synergistic) interaction against PTZinduced seizures inmice. Thus, AS-1may be potentially used in an add-on therapy with VPA. Moreover, incubation of zebrafish larvae with AS-1 substantially decreased the number, cumulative but not the mean duration of epileptiform-like events in electroencephalographic assay. Finally, the in vitro ADME-Tox studies revealed that AS-1 is characterized by a very good permeability in the parallel artificial membrane permeability assay test, excellent metabolic stability on human liver microsomes (HLMs), no significant influence on CYP3A4/CYP2D6 activity, and moderate inhibition of CYP2C9 in a concentration of 10 μ\muM, as well as no hepatotoxic properties in HepG2 cells (concentration of 10 μ\muM)

    Discovery of (R)-N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide [(R)-AS-1], a novel orally bioavailable EAAT2 modulator with drug-like properties and potent antiseizure activity in vivo

    Get PDF
    [Image: see text] (R)-7 [(R)-AS-1] showed broad-spectrum antiseizure activity across in vivo mouse seizure models: maximal electroshock (MES), 6 Hz (32/44 mA), acute pentylenetetrazol (PTZ), and PTZ-kindling. A remarkable separation between antiseizure activity and CNS-related adverse effects was also observed. In vitro studies with primary glia cultures and COS-7 cells expressing the glutamate transporter EAAT2 showed enhancement of glutamate uptake, revealing a stereoselective positive allosteric modulator (PAM) effect, further supported by molecular docking simulations. (R)-7 [(R)-AS-1] was not active in EAAT1 and EAAT3 assays and did not show significant off-target activity, including interactions with targets reported for marketed antiseizure drugs, indicative of a novel and unprecedented mechanism of action. Both in vivo pharmacokinetic and in vitro absorption, distribution, metabolism, excretion, toxicity (ADME-Tox) profiles confirmed the favorable drug-like potential of the compound. Thus, (R)-7 [(R)-AS-1] may be considered as the first-in-class small-molecule PAM of EAAT2 with potential for further preclinical and clinical development in epilepsy and possibly other CNS disorders

    Sildenafil, a phosphodiesterase type 5 inhibitor, enhances the antidepressant activity of amitriptyline but not desipramine, in the forced swim test in mice

    Get PDF
    The cholinergic theory of depression highlights the involvement of muscarinic acetylcholine receptors in the neurobiology of mood disorders. The present study was designed to investigate the effect of sildenafil, a phosphodiesterase type 5 inhibitor which exhibits cholinomimetic properties, alone and in combination with scopolamine in the forced swim test in mice. Moreover, we assessed the ability of sildenafil to modify the antidepressant activity of two tricyclic antidepressants with distinct cholinolytic activity, amitriptyline and desipramine. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. To evaluate the potential pharmacokinetic interaction between amitriptyline and sildenafil, brain and serum concentrations of amitriptyline were determined by HPLC. Sildenafil (1.25–20 mg/kg) as well as scopolamine (0.5 mg/kg) and its combination with sildenafil (1.25 mg/kg) did not affect the total immobility time duration. However, joint administration of scopolamine with sildenafil at doses of 2.5 and 5 mg/kg significantly reduced immobility time as compared to control group. Moreover, co-administration of scopolamine with sildenafil at the highest dose (5 mg/kg) significantly decreased immobility time as compared to scopolamine-treated group. Sildenafil (1.25, 2.5 and 5 mg/kg) significantly enhanced the antidepressant activity of amitriptyline (5 mg/kg). No changes in anti-immobility action of desipramine (20 mg/kg) in combination with sildenafil (5, 10 and 20 mg/kg) were observed. Sildenafil did not affect amitriptyline level in both brain and serum. In conclusion, the present study suggests that sildenafil may enhance the activity of antidepressant drugs which exhibit cholinolytic activity
    corecore