35 research outputs found

    Revisiting the expression and function of follicle-stimulation hormone receptor in human umbilical vein endothelial cells

    Get PDF
    Expression of follicle-stimulation hormone receptor (FSHR) is confined to gonads and at low levels to some extragonadal tissues like human umbilical vein endothelial cells (HUVEC). FSH-FSHR signaling was shown to promote HUVEC angiogenesis and thereafter suggested to have an influential role in pregnancy. We revisited hereby the expression and functionality of FSHR in HUVECs angiogenesis, and were unable to reproduce the FSHR expression in human umbilical cord, HUVECs or immortalized HUVECs (HUV-ST). Positive controls as granulosa cells and HEK293 cells stably transfected with human FSHR cDNA expressed FSHR signal. In contrast to positive control VEGF, FSH treatment showed no effects on tube formation, nitric oxide production, wound healing or cell proliferation in HUVEC/HUV-ST. Thus, it remains open whether the FSH-FSHR activation has a direct regulatory role in the angiogenesis of HUVECs.</p

    Functional Consequences of Intracellular Proline Levels Manipulation Affecting PRODH/POX-Dependent Pro-Apoptotic Pathways in a Novel in Vitro Cell Culture Model

    Get PDF
    Background/Aims: The effect of impaired intracellular proline availability for proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied. Methods: We generated a constitutively knocked-down PRODH/POX MCF-7 breast cancer cell line (MCF-7(shPRODH/POX)) as a model to analyze the functional consequences of impaired intracellular proline levels. We have used inhibitor of proline utilization in collagen biosynthesis, 2-metoxyestradiol (MOE), inhibitor of prolidase that generate proline, rapamycin (Rap) and glycyl-proline (GlyPro), substrate for prolidase. Collagen and DNA biosynthesis were evaluated by radiometric assays. Cell viability was determined using Nucleo-Counter NC-3000. The activity of prolidase was determined by colorimetric assay. Expression of proteins was assessed by Western blot and immunofluorescence bioimaging. Concentration of proline was analyzed by liquid chromatography with mass spectrometry. Results: PRODH/POX knockdown decreased DNA and collagen biosynthesis, whereas increased prolidase activity and intracellular proline level in MCF-7(shPRODH/POX) cells. All studied compounds decreased cell viability in MCF-7 and MCF-7(shPRODH/POX) cells. DNA biosynthesis was similarly inhibited by Rap and MOE in both cell lines, but GlyPro inhibited the process only in MCF-7(shPRODH/POX) and MOE+GlyPro only in MCF-7 cells. All the compounds inhibited collagen biosynthesis, increased prolidase activity and cytoplasmic proline level in MCF-7(shPRODH/POX) cells and contributed to the induction of pro-survival mode only in MCF-7(shPRODH/POX) cells. In contrast, all studied compounds upregulated expression of pro-apoptotic protein only in MCF-7 cells. Conclusion: PRODH/POX was confirmed as a driver of apoptosis and proved the eligibility of MCF-7(shPRODH/POX) cell line as a highly effective model to elucidate the different mechanisms underlying proline utilization or generation in PRODH/POX-dependent pro-apoptotic pathways. (C) 2017 The Author(s) Published by S. Karger AG, Base

    Mouse models of adrenal tumors responsive to gonadotropin-releasing hormone and gonadotropins

    Get PDF
    In recent years, several mouse models have been established for characterization of the molecular pathways involved in adrenocortical tumorigenesis. Adrenal tumors develop in genetically susceptible mouse strains after prepubertal gonadectomy, in mice transgenic with oncogenes (simian virus 40 T antigen), several gene knockouts (such as inhibin or conditional Gata6F/F), and in mice overexpressing transcription factor GATA binding protein 4. The gonadal rest-type adrenal tumor phenotype is regulated by gonadotropins, mainly luteinizing hormone. Luteinizing hormone/chorionic hormone receptor and gonadotropin-releasing hormone receptor expression has been found in human adrenocortical carcinoma, as well as in several mouse adrenal tumor/adrenocarcinoma models. This mini-review will address recent advancements in this research topic with respect to the molecular basis of adrenocortical tumorigenesis, the clinical relevance of these tumor models, and the potential for future targeted treatment strategies. Furthermore, the ectopic expression of the luteinizing hormone/chorionic hormone receptor or gonadotropin-releasing hormone receptor may open up options for targeted therapy approaches. </p

    Constitutively active follicle-stimulating hormone receptor enables androgen-independent spermatogenesis

    Get PDF
    Spermatogenesis is regulated by the 2 pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). This process is considered impossible without the absolute requirement of LH-stimulated testicular testosterone (T) production. The role of FSH remains unclear because men and mice with inactivating FSH receptor (FSHR) mutations are fertile. We revisited the role of FSH in spermatogenesis using transgenic mice expressing a constitutively strongly active FSHR mutant in a LH receptor-null (LHR-null) background. The mutant FSHR reversed the azoospermia and partially restored fertility of Lhr(-/-) mice. The finding was initially ascribed to the residual Leydig cell T production. However, when T action was completely blocked with the potent antiandrogen flutamide, spermatogenesis persisted. Hence, completely T-independent spermatogenesis is possible through strong FSHR activation, and the dogma of T being a sine qua non for spermatogenesis may need modification. The mechanism for the finding appeared to be that FSHR activation maintained the expression of Sertoli cell genes considered androgen dependent. The translational message of our findings is the possibility of developing a new strategy of high-dose FSH treatment for spermatogenic failure. Our findings also provide an explanation of molecular pathogenesis for Pasqualini syndrome (fertile eunuchs; LH/T deficiency with persistent spermatogenesis) and explain how the hormonal regulation of spermatogenesis has shifted from FSH to T dominance during evolution

    GnRH antagonist treatment of malignant adrenocortical tumors

    Get PDF
    Aberrantly expressed G protein-coupled receptors in tumors are considered as potential therapeutic targets. We analyzed the expressions of receptors of gonadotropin-releasing hormone (GNRHR), luteinizing hormone/chorionic gonadotropin (LHCGR) and follicle-stimulating hormone (FSHR) in human adrenocortical carcinomas and assessed their response to GnRH antagonist therapy. We further studied the effects of the GnRH antagonist cetrorelix acetate (CTX) on cultured adrenocortical tumor (ACT) cells (mouse Cα1 and Y-1, and human H295R), and in vivo in transgenic mice (SV40 T-antigen expression under inhibin α promoter) bearing Lhcgr and Gnrhr in ACT. Both models were treated with control (CT), CTX, human chorionic gonadotropin (hCG) or CTX+hCG, and their growth and transcriptional changes were analyzed. In situ hybridization and qPCR analysis of human adrenocortical carcinomas (n = 11-13) showed expression of GNRHR in 54/73%, LHCGR in 77/100% and FSHR in 0%, respectively. CTX treatment in vitro decreased cell viability and proliferation, and increased caspase 3/7 activity in all treated cells. In vivo, CTX and CTX+hCG (but not hCG alone) decreased ACT weights and serum LH and progesterone concentrations. CTX treatment downregulated the tumor markers Lhcgr and Gata4. Upregulated genes included Grb10, Rerg, Nfatc and Gnas, all recently found to be abundantly expressed in healthy adrenal vs ACT. Our data suggest that CTX treatment may improve the therapy of human adrenocortical carcinomas by direct action on GNRHR-positive cancer cells inducing apoptosis and/or reducing gonadotropin release, directing tumor cells towards a healthy adrenal gene expression profile

    Platelet Carbonic Anhydrase II, a Forgotten Enzyme, May Be Responsible for Aspirin Resistance

    Get PDF
    Background. Thromboembolic events constitute a major health problem, despite the steadily expanding arsenal of antiplatelet drugs. Hence, there is still a need to optimize the antiplatelet therapy. Objectives. The aim of our study was to verify a hypothesis that there are no differences in platelet proteome between two groups of healthy people representing different acetylsalicylic acid (aspirin) responses as assessed by the liquid chromatography/mass spectrometry (LC/MS) technique. Patients/Methods. A total of 61 healthy volunteers were recruited for the study. Physical examination and blood collection were followed by platelet-rich plasma aggregation assays and platelet separation for proteomic LC/MS analysis. Arachidonic acid- (AA-) induced aggregation (in the presence of aspirin) allowed to divide study participants into two groups aspirin-resistant (AR) and aspirin-sensitive (AS) ones. Subsequently, platelet proteome was compared in groups using the LC/MS analysis. Results. The LC/MS analysis of platelet proteome between groups revealed that out of all identified proteins, the only discriminatory protein, affecting aspirin responsiveness, is platelet carbonic anhydrase II (CA II). Conclusions. CA II is a platelet function modulator and should be taken into consideration as a cardiovascular event risk factor or therapeutic target

    Luteinizing hormone and GATA4 action in the adrenocortical tumorigenesis of gonadectomized female mice

    Get PDF
    Background/Aims: Physiological role of luteinizing hormone (LH) and its receptor (LHCGR) in adrenal remains unknown. In inhibin-α/Simian Virus 40 T antigen (SV40Tag) (inhα/Tag) mice, gonadectomy-induced (OVX) elevated LH triggers the growth of transcription factor GATA4 (GATA4)-positive adrenocortical tumors in a hyperplasia-adenoma-adenocarcinoma sequence. Methods: We investigated the role of LHCGR in tumor induction, by crossbreeding inhα/Tag with Lhcgr knockout (LuRKO) mice. By knocking out Lhcgr and Gata4 in Cα1 adrenocortical cells (Lhcgr-ko, Gata4-ko) we tested their role in tumor progression. Results: Adrenal tumors of OVX inhα/Tag mice develop from the hyperplastic cells localized in the topmost layer of zona fasciculata. OVX inhα/Tag/LuRKO only developed SV40Tag positive hyperplastic cells that were GATA4 negative, cleaved caspase-3 positive and did not progress into adenoma. In contrast to Lhcgr-ko, Gata4-ko Cα1 cells presented decreased proliferation, increased apoptosis, decreased expression of Inha, SV40Tag and Lhcgr tumor markers, as well as up-regulated adrenal- and down-regulated sex steroid gene expression. Both Gata4-ko and Lhcgr-ko Cα1 cells had decreased expression of steroidogenic genes resulting in decreased basal progesterone production. Conclusion: Our data indicate that LH/LHCGR signaling is critical for the adrenal cell reprogramming by GATA4 induction prompting adenoma formation and gonadal-like phenotype of the adrenocortical tumors in inhα/Tag mice.</p

    A Patient-Derived Cell Atlas Informs Precision Targeting of Glioblastoma

    Get PDF
    Glioblastoma (GBM) is a malignant brain tumor with few therapeutic options. The disease presents with a complex spectrum of genomic aberrations, but the pharmacological consequences of these aberrations are partly unknown. Here, we report an integrated pharmacogenomic analysis of 100 patient-derived GBM cell cultures from the human glioma cell culture (HGCC) cohort. Exploring 1,544 drugs, we find that GBM has two main pharmacological subgroups, marked by differential response to proteasome inhibitors and mutually exclusive aberrations in TP53 and CDKN2A/B. We confirm this trend in cell and in xenotransplantation models, and identify both Bcl-2 family inhibitors and p53 activators as potentiators of proteasome inhibitors in GBM cells, We can further predict the responses of individual cell cultures to several existing drug classes, presenting opportunities for drug repurposing and design of stratified trials. Our functionally profiled biobank provides a valuable resource for the discovery of new treatments for GBM.Patrik Johansson, Cecilia Krona and Soumi Kundu share first authorship</p

    Monotherapy efficacy of blood-brain barrier permeable small molecule reactivators of protein phosphatase 2A in glioblastoma

    Get PDF
    Glioblastoma is a fatal disease in which most targeted therapies have clinically failed. However, pharmacological reactivation of tumour suppressors has not been thoroughly studied as yet as a glioblastoma therapeutic strategy. Tumour suppressor protein phosphatase 2A is inhibited by non-genetic mechanisms in glioblastoma, and thus, it would be potentially amendable for therapeutic reactivation. Here, we demonstrate that small molecule activators of protein phosphatase 2A, NZ-8-061 and DBK-1154, effectively cross the in vitro model of blood–brain barrier, and in vivo partition to mouse brain tissue after oral dosing. In vitro, small molecule activators of protein phosphatase 2A exhibit robust cell-killing activity against five established glioblastoma cell lines, and nine patient-derived primary glioma cell lines. Collectively, these cell lines have heterogeneous genetic background, kinase inhibitor resistance profile and stemness properties; and they represent different clinical glioblastoma subtypes. Moreover, small molecule activators of protein phosphatase 2A were found to be superior to a range of kinase inhibitors in their capacity to kill patient-derived primary glioma cells. Oral dosing of either of the small molecule activators of protein phosphatase 2A significantly reduced growth of infiltrative intracranial glioblastoma tumours. DBK-1154, with both higher degree of brain/blood distribution, and more potent in vitro activity against all tested glioblastoma cell lines, also significantly increased survival of mice bearing orthotopic glioblastoma xenografts. In summary, this report presents a proof-of-principle data for blood–brain barrier—permeable tumour suppressor reactivation therapy for glioblastoma cells of heterogenous molecular background. These results also provide the first indications that protein phosphatase 2A reactivation might be able to challenge the current paradigm in glioblastoma therapies which has been strongly focused on targeting specific genetically altered cancer drivers with highly specific inhibitors. Based on demonstrated role for protein phosphatase 2A inhibition in glioblastoma cell drug resistance, small molecule activators of protein phosphatase 2A may prove to be beneficial in future glioblastoma combination therapies.</p
    corecore