296 research outputs found

    Dynamical phase transition of a 1D transport process including death

    Full text link
    Motivated by biological aspects related to fungus growth, we consider the competition of growth and corrosion. We study a modification of the totally asymmetric exclusion process, including the probabilities of injection α\alpha and death of the last particle δ\delta. The system presents a phase transition at δc(α)\delta_c(\alpha), where the average position of the last particle grows as t\sqrt{t}. For δ>δc\delta>\delta_c, a non equilibrium stationary state exists while for δ<δc\delta<\delta_c the asymptotic state presents a low density and max current phases. We discuss the scaling of the density and current profiles for parallel and sequential updates.Comment: 4 pages, 5 figure

    Description of hard sphere crystals and crystal-fluid interfaces: a critical comparison between density functional approaches and a phase field crystal model

    Full text link
    In materials science the phase field crystal approach has become popular to model crystallization processes. Phase field crystal models are in essence Landau-Ginzburg-type models, which should be derivable from the underlying microscopic description of the system in question. We present a study on classical density functional theory in three stages of approximation leading to a specific phase field crystal model, and we discuss the limits of applicability of the models that result from these approximations. As a test system we have chosen the three--dimensional suspension of monodisperse hard spheres. The levels of density functional theory that we discuss are fundamental measure theory, a second-order Taylor expansion thereof, and a minimal phase-field crystal model. We have computed coexistence densities, vacancy concentrations in the crystalline phase, interfacial tensions and interfacial order parameter profiles, and we compare these quantities to simulation results. We also suggest a procedure to fit the free parameters of the phase field crystal model.Comment: 21 page

    The Early Crystal Nucleation Process in Hard Spheres shows Synchronised Ordering and Densification

    Get PDF
    We investigate the early part of the crystal nucleation process in the hard sphere fluid using data produced by computer simulation. We find that hexagonal order manifests continuously in the overcompressed liquid, beginning approximately one diffusion time before the appearance of the first `solid-like' particle of the nucleating cluster, and that a collective influx of particles towards the nucleation site occurs simultaneously to the ordering process: the density increases leading to nucleation are generated by the same individual particle displacements as the increases in order. We rule out the presence of qualitative differences in the early nucleation process between medium and low overcompressions, and also provide evidence against any separation of translational and orientational order on the relevant lengthscales

    Crystallization in suspensions of hard spheres: A Monte Carlo and Molecular Dynamics simulation study

    Get PDF
    The crystallization of a metastable melt is one of the most important non equilibrium phenomena in condensed matter physics, and hard sphere colloidal model systems have been used for several decades to investigate this process by experimental observation and computer simulation. Nevertheless, there is still an unexplained discrepancy between simulation data and experimental nucleation rate densities. In this paper we examine the nucleation process in hard spheres using molecular dynamics and Monte Carlo simulation. We show that the crystallization process is mediated by precursors of low orientational bond-order and that our simulation data fairly match the experimental data sets

    Entropy production in the non-equilibrium steady states of interacting many-body systems

    Full text link
    Entropy production is one of the most important characteristics of non-equilibrium steady states. We study here the steady-state entropy production, both at short times as well as in the long-time limit, of two important classes of non-equilibrium systems: transport systems and reaction-diffusion systems. The usefulness of the mean entropy production rate and of the large deviation function of the entropy production for characterizing non-equilibrium steady states of interacting many-body systems is discussed. We show that the large deviation function displays a kink-like feature at zero entropy production that is similar to that observed for a single particle driven along a periodic potential. This kink is a direct consequence of the detailed fluctuation theorem fulfilled by the probability distribution of the entropy production and is therefore a generic feature of the corresponding large deviation function.Comment: 7 figures, to appear in Physical Review

    Posterior probability and fluctuation theorem in stochastic processes

    Full text link
    A generalization of fluctuation theorems in stochastic processes is proposed. The new theorem is written in terms of posterior probabilities, which are introduced via the Bayes theorem. In usual fluctuation theorems, a forward path and its time reversal play an important role, so that a microscopically reversible condition is essential. In contrast, the microscopically reversible condition is not necessary in the new theorem. It is shown that the new theorem adequately recovers various theorems and relations previously known, such as the Gallavotti-Cohen-type fluctuation theorem, the Jarzynski equality, and the Hatano-Sasa relation, when adequate assumptions are employed.Comment: 4 page

    Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    Full text link
    The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identification. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.Comment: 25 pages, 22 figure

    Current large deviations in a driven dissipative model

    Full text link
    We consider lattice gas diffusive dynamics with creation-annihilation in the bulk and maintained out of equilibrium by two reservoirs at the boundaries. This stochastic particle system can be viewed as a toy model for granular gases where the energy is injected at the boundary and dissipated in the bulk. The large deviation functional for the particle currents flowing through the system is computed and some physical consequences are discussed: the mechanism for local current fluctuations, dynamical phase transitions, the fluctuation-relation
    • …
    corecore