35 research outputs found

    Criteria for the use of omics-based predictors in clinical trials.

    Get PDF
    The US National Cancer Institute (NCI), in collaboration with scientists representing multiple areas of expertise relevant to 'omics'-based test development, has developed a checklist of criteria that can be used to determine the readiness of omics-based tests for guiding patient care in clinical trials. The checklist criteria cover issues relating to specimens, assays, mathematical modelling, clinical trial design, and ethical, legal and regulatory aspects. Funding bodies and journals are encouraged to consider the checklist, which they may find useful for assessing study quality and evidence strength. The checklist will be used to evaluate proposals for NCI-sponsored clinical trials in which omics tests will be used to guide therapy

    Criteria for the use of omics-based predictors in clinical trials: explanation and elaboration

    Full text link
    Abstract High-throughput ‘omics’ technologies that generate molecular profiles for biospecimens have been extensively used in preclinical studies to reveal molecular subtypes and elucidate the biological mechanisms of disease, and in retrospective studies on clinical specimens to develop mathematical models to predict clinical endpoints. Nevertheless, the translation of these technologies into clinical tests that are useful for guiding management decisions for patients has been relatively slow. It can be difficult to determine when the body of evidence for an omics-based test is sufficiently comprehensive and reliable to support claims that it is ready for clinical use, or even that it is ready for definitive evaluation in a clinical trial in which it may be used to direct patient therapy. Reasons for this difficulty include the exploratory and retrospective nature of many of these studies, the complexity of these assays and their application to clinical specimens, and the many potential pitfalls inherent in the development of mathematical predictor models from the very high-dimensional data generated by these omics technologies. Here we present a checklist of criteria to consider when evaluating the body of evidence supporting the clinical use of a predictor to guide patient therapy. Included are issues pertaining to specimen and assay requirements, the soundness of the process for developing predictor models, expectations regarding clinical study design and conduct, and attention to regulatory, ethical, and legal issues. The proposed checklist should serve as a useful guide to investigators preparing proposals for studies involving the use of omics-based tests. The US National Cancer Institute plans to refer to these guidelines for review of proposals for studies involving omics tests, and it is hoped that other sponsors will adopt the checklist as well.http://deepblue.lib.umich.edu/bitstream/2027.42/134536/1/12916_2013_Article_1104.pd

    Systemic Anticancer Therapy and Thromboembolic Outcomes in Hospitalized Patients With Cancer and COVID-19

    Get PDF
    IMPORTANCE: Systematic data on the association between anticancer therapies and thromboembolic events (TEEs) in patients with COVID-19 are lacking. OBJECTIVE: To assess the association between anticancer therapy exposure within 3 months prior to COVID-19 and TEEs following COVID-19 diagnosis in patients with cancer. DESIGN, SETTING, AND PARTICIPANTS: This registry-based retrospective cohort study included patients who were hospitalized and had active cancer and laboratory-confirmed SARS-CoV-2 infection. Data were accrued from March 2020 to December 2021 and analyzed from December 2021 to October 2022. EXPOSURE: Treatments of interest (TOIs) (endocrine therapy, vascular endothelial growth factor inhibitors/tyrosine kinase inhibitors [VEGFis/TKIs], immunomodulators [IMiDs], immune checkpoint inhibitors [ICIs], chemotherapy) vs reference (no systemic therapy) in 3 months prior to COVID-19. MAIN OUTCOMES AND MEASURES: Main outcomes were (1) venous thromboembolism (VTE) and (2) arterial thromboembolism (ATE). Secondary outcome was severity of COVID-19 (rates of intensive care unit admission, mechanical ventilation, 30-day all-cause mortality following TEEs in TOI vs reference group) at 30-day follow-up. RESULTS: Of 4988 hospitalized patients with cancer (median [IQR] age, 69 [59-78] years; 2608 [52%] male), 1869 had received 1 or more TOIs. Incidence of VTE was higher in all TOI groups: endocrine therapy, 7%; VEGFis/TKIs, 10%; IMiDs, 8%; ICIs, 12%; and chemotherapy, 10%, compared with patients not receiving systemic therapies (6%). In multivariable log-binomial regression analyses, relative risk of VTE (adjusted risk ratio [aRR], 1.33; 95% CI, 1.04-1.69) but not ATE (aRR, 0.81; 95% CI, 0.56-1.16) was significantly higher in those exposed to all TOIs pooled together vs those with no exposure. Among individual drugs, ICIs were significantly associated with VTE (aRR, 1.45; 95% CI, 1.01-2.07). Also noted were significant associations between VTE and active and progressing cancer (aRR, 1.43; 95% CI, 1.01-2.03), history of VTE (aRR, 3.10; 95% CI, 2.38-4.04), and high-risk site of cancer (aRR, 1.42; 95% CI, 1.14-1.75). Black patients had a higher risk of TEEs (aRR, 1.24; 95% CI, 1.03-1.50) than White patients. Patients with TEEs had high intensive care unit admission (46%) and mechanical ventilation (31%) rates. Relative risk of death in patients with TEEs was higher in those exposed to TOIs vs not (aRR, 1.12; 95% CI, 0.91-1.38) and was significantly associated with poor performance status (aRR, 1.77; 95% CI, 1.30-2.40) and active/progressing cancer (aRR, 1.55; 95% CI, 1.13-2.13). CONCLUSIONS AND RELEVANCE: In this cohort study, relative risk of developing VTE was high among patients receiving TOIs and varied by the type of therapy, underlying risk factors, and demographics, such as race and ethnicity. These findings highlight the need for close monitoring and perhaps personalized thromboprophylaxis to prevent morbidity and mortality associated with COVID-19-related thromboembolism in patients with cancer

    Criteria for the use of omics-based predictors in clinical trials: Explanation and elaboration

    Get PDF
    High-throughput 'omics' technologies that generate molecular profiles for biospecimens have been extensively used in preclinical studies to reveal molecular subtypes and elucidate the biological mechanisms of disease, and in retrospective studies on clinical specimens to develop mathematical models to predict clinical endpoints. Nevertheless, the translation of these technologies into clinical tests that are useful for guiding management decisions for patients has been relatively slow. It can be difficult to determine when the body of evidence for an omics-based test is sufficiently comprehensive and reliable to support claims that it is ready for clinical use, or even that it is ready for definitive evaluation in a clinical trial in which it may be used to direct patient therapy. Reasons for this difficulty include the exploratory and retrospective nature of many of these studies, the complexity of these assays and their application to clinical specimens, and the many potential pitfalls inherent in the development of mathematical predictor models from the very high-dimensional data generated by these omics technologies. Here we present a checklist of criteria to consider when evaluating the body of evidence supporting the clinical use of a predictor to guide patient therapy. Included are issues pertaining to specimen and assay requirements, the soundness of the process for developing predictor models, expectations regarding clinical study design and conduct, and attention to regulatory, ethical, and legal issues. The proposed checklist should serve as a useful guide to investigators preparing proposals for studies involving the use of omics-based tests. The US National Cancer Institute plans to refer to these guidelines for review of proposals for studies involving omics tests, and it is hoped that other sponsors will adopt the checklist as well. © 2013 McShane et al.; licensee BioMed Central Ltd

    Association of changes in expression of HDAC and SIRT genes after drug treatment with cancer cell line sensitivity to kinase inhibitors

    No full text
    ABSTRACTHistone deacetylases (HDACs) and sirtuins (SIRTs) are important epigenetic regulators of cancer pathways. There is a limited understanding of how transcriptional regulation of their genes is affected by chemotherapeutic agents, and how such transcriptional changes affect tumour sensitivity to drug treatment. We investigated the concerted transcriptional response of HDAC and SIRT genes to 15 approved antitumor agents in the NCI-60 cancer cell line panel. Antitumor agents with diverse mechanisms of action induced upregulation or downregulation of multiple HDAC and SIRT genes. HDAC5 was upregulated by dasatinib and erlotinib in the majority of the cell lines. Tumour cell line sensitivity to kinase inhibitors was associated with upregulation of HDAC5, HDAC1, and several SIRT genes. We confirmed changes in HDAC and SIRT expression in independent datasets. We also experimentally validated the upregulation of HDAC5 mRNA and protein expression by dasatinib in the highly sensitive IGROV1 cell line. HDAC5 was not upregulated in the UACC-257 cell line resistant to dasatinib. The effects of cancer drug treatment on expression of HDAC and SIRT genes may influence chemosensitivity and may need to be considered during chemotherapy

    Platinum Sensitivity in <i>IDH1/2</i> Mutated Intrahepatic Cholangiocarcinoma: Not All “BRCAness” Is Created Equal

    No full text
    Preclinical data suggest that IDH1/2 mutations result in defective homologous recombination repair (HRR). We hypothesized that patients with IDH1/2mt intrahepatic cholangiocarcinoma (IHCC) would benefit more from 1 L platinum chemotherapy than patients with wildtype (WT) tumors. We performed a multicenter retrospective study of 81 patients with unresectable IHCC treated with 1 L platinum with a primary endpoint of clinical benefit rate (CBR). Patients with IDH1/2mt tumors had a similar CBR and objective response rate compared to those with IDH WT disease (59 versus 54%; p = 0.803), suggesting that a relationship between platinum sensitivity and HRR gene defects may be specific to tumor context.</p

    Association of changes in expression of <i>HDAC</i> and <i>SIRT</i> genes after drug treatment with cancer cell line sensitivity to kinase inhibitors

    No full text
    Histone deacetylases (HDACs) and sirtuins (SIRTs) are important epigenetic regulators of cancer pathways. There is a limited understanding of how transcriptional regulation of their genes is affected by chemotherapeutic agents, and how such transcriptional changes affect tumour sensitivity to drug treatment. We investigated the concerted transcriptional response of HDAC and SIRT genes to 15 approved antitumor agents in the NCI-60 cancer cell line panel. Antitumor agents with diverse mechanisms of action induced upregulation or downregulation of multiple HDAC and SIRT genes. HDAC5 was upregulated by dasatinib and erlotinib in the majority of the cell lines. Tumour cell line sensitivity to kinase inhibitors was associated with upregulation of HDAC5, HDAC1, and several SIRT genes. We confirmed changes in HDAC and SIRT expression in independent datasets. We also experimentally validated the upregulation of HDAC5 mRNA and protein expression by dasatinib in the highly sensitive IGROV1 cell line. HDAC5 was not upregulated in the UACC-257 cell line resistant to dasatinib. The effects of cancer drug treatment on expression of HDAC and SIRT genes may influence chemosensitivity and may need to be considered during chemotherapy.</p
    corecore