628 research outputs found

    Dynamical Dark Matter: II. An Explicit Model

    Full text link
    In a recent paper (arXiv:1106.4546), we introduced "dynamical dark matter," a new framework for dark-matter physics, and outlined its underlying theoretical principles and phenomenological possibilities. Unlike most traditional approaches to the dark-matter problem which hypothesize the existence of one or more stable dark-matter particles, our dynamical dark-matter framework is characterized by the fact that the requirement of stability is replaced by a delicate balancing between cosmological abundances and lifetimes across a vast ensemble of individual dark-matter components. This setup therefore collectively produces a time-varying cosmological dark-matter abundance, and the different dark-matter components can interact and decay throughout the current epoch. While the goal of our previous paper was to introduce the broad theoretical aspects of this framework, the purpose of the current paper is to provide an explicit model of dynamical dark matter and demonstrate that this model satisfies all collider, astrophysical, and cosmological constraints. The results of this paper therefore constitute an "existence proof" of the phenomenological viability of our overall dynamical dark-matter framework, and demonstrate that dynamical dark matter is indeed a viable alternative to the traditional paradigm of dark-matter physics. Dynamical dark matter must therefore be considered alongside other approaches to the dark-matter problem, particularly in scenarios involving large extra dimensions or string theory in which there exist large numbers of particles which are neutral under Standard-Model symmetries.Comment: 45 pages, LaTeX, 10 figures. Replaced to match published versio

    Dark Radiation Emerging After Big Bang Nucleosynthesis?

    Full text link
    We show how recent data from observations of the cosmic microwave background may suggest the presence of additional radiation density which appeared after big bang nucleosynthesis. We propose a general scheme by which this radiation could be produced from the decay of non-relativistic matter, we place constraints on the properties of such matter, and we give specific examples of scenarios in which this general scheme may be realized.Comment: v3: 5 pages, 1 figure. References added, typos corrected, notation changed throughout. v2: 5 pages, 1 figure. Reformatted, references added, acknowledgments updated, effect of radiation on CMB clarified. v1: 11 pages, 1 figur

    Bulk Viscosity, Decaying Dark Matter, and the Cosmic Acceleration

    Get PDF
    We discuss a cosmology in which cold dark-matter particles decay into relativistic particles. We argue that such decays could lead naturally to a bulk viscosity in the cosmic fluid. For decay lifetimes comparable to the present hubble age, this bulk viscosity enters the cosmic energy equation as an effective negative pressure. We investigate whether this negative pressure is of sufficient magnitude to account fo the observed cosmic acceleration. We show that a single decaying species in a flat, dark-matter dominated cosmology without a cosmological constant cannot reproduce the observed magnitude-redshift relation from Type Ia supernovae. However, a delayed bulk viscosity, possibly due to a cascade of decaying particles may be able to account for a significant fraction of the apparent cosmic acceleration. Possible candidate nonrelativistic particles for this scenario include sterile neutrinos or gauge-mediated decaying supersymmetric particles.Comment: 7 pages, 4 figure

    Statistical characteristics of formation and evolution of structure in the universe

    Get PDF
    An approximate statistical description of the formation and evolution of structure of the universe based on the Zel'dovich theory of gravitational instability is proposed. It is found that the evolution of DM structure shows features of self-similarity and the main structure characteristics can be expressed through the parameters of initial power spectrum and cosmological model. For the CDM-like power spectrum and suitable parameters of the cosmological model the effective matter compression reaches the observed scales Rwall∼R_{wall}\sim 20 -- 25h−1h^{-1}Mpc with the typical mean separation of wall-like elements DSLSS∼D_{SLSS}\sim 50 -- 70h−1h^{-1}Mpc. This description can be directly applied to the deep pencil beam galactic surveys and absorption spectra of quasars. For larger 3D catalogs and simulations it can be applied to results obtained with the core-sampling analysis. It is shown that the interaction of large and small scale perturbations modulates the creation rate of early Zel'dovich pancakes and generates bias on the SLSS scale. For suitable parameters of the cosmological model and reheating process this bias can essentially improve the characteristics of simulated structure of the universe. The models with 0.3≤Ωm≤0.50.3\leq \Omega_m \leq 0.5 give the best description of the observed structure parameters. The influence of low mass "warm" dark matter particles, such as a massive neutrino, will extend the acceptable range of Ωm\Omega_m and hh.Comment: 20pages, 7 figures, MNRAS in pres

    Gravitational Instability in Collisionless Cosmological Pancakes

    Get PDF
    The gravitational instability of cosmological pancakes composed of collisionless dark matter in an Einstein-de Sitter universe is investigated numerically to demonstrate that pancakes are unstable with respect to fragmentation and the formation of filaments. A ``pancake'' is defined here as the nonlinear outcome of the growth of a 1D, sinusoidal, plane-wave, adiabatic density perturbation. We have used high resolution, 2D, N-body simulations by the Particle-Mesh (PM) method to study the response of pancakes to perturbation by either symmetric (density) or antisymmetric (bending or rippling) modes, with corresponding wavevectors k_s and k_a transverse to the wavevector k_p of the unperturbed pancake plane-wave. We consider dark matter which is initially ``cold'' (i.e. with no random thermal velocity in the initial conditions). We also investigate the effect of a finite, random, isotropic, initial velocity dispersion (i.e. initial thermal velocity) on the fate of pancake collapse and instability. Pancakes are shown to be gravitationally unstable with respect to all perturbations of wavelength l<l_p (where l_p= 2pi/k_p). These results are in contradiction with the expectations of an approximate, thin-sheet energy argument.Comment: To appear in the Astrophysical Journal (1997), accepted for publication 10/10/96, single postscript file, 61 pages, 19 figure

    Limits on MeV Dark Matter from the Effective Number of Neutrinos

    Full text link
    Thermal dark matter that couples more strongly to electrons and photons than to neutrinos will heat the electron-photon plasma relative to the neutrino background if it becomes nonrelativistic after the neutrinos decouple from the thermal background. This results in a reduction in N_eff below the standard-model value, a result strongly disfavored by current CMB observations. Taking conservative lower bounds on N_eff and on the decoupling temperature of the neutrinos, we derive a bound on the dark matter particle mass of m_\chi > 3-9 MeV, depending on the spin and statistics of the particle. For p-wave annihilation, our limit on the dark matter particle mass is stronger than the limit derived from distortions to the CMB fluctuation spectrum produced by annihilations near the epoch of recombination.Comment: 5 pages, 1 figure, discussion added, references added and updated, labels added to figure, to appear in Phys. Rev.

    Interior of Distorted Black Holes

    Full text link
    We study the interior of distorted static axisymmetric black holes. We obtain a general interior solution and study its asymptotics both near the horizon and singularity. As a special example, we apply the obtained results to the case of the so-called `caged' black holes.Comment: 12 pages, 16 figure

    Responses of the Brans-Dicke field due to gravitational collapses

    Full text link
    We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around ω\omega ~ -1.5. If the Brans-Dicke coupling is greater than -1.5, the TuuT_{uu} component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the TvvT_{vv} component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.Comment: 28 pages, 14 figure

    On the Possibility of Anisotropic Curvature in Cosmology

    Full text link
    In addition to shear and vorticity a homogeneous background may also exhibit anisotropic curvature. Here a class of spacetimes is shown to exist where the anisotropy is solely of the latter type, and the shear-free condition is supported by a canonical, massless 2-form field. Such spacetimes possess a preferred direction in the sky and at the same time a CMB which is isotropic at the background level. A distortion of the luminosity distances is derived and used to test the model against the CMB and supernovae (using the Union catalog), and it is concluded that the latter exhibit a higher-than-expected dependence on angular position. It is shown that future surveys could detect a possible preferred direction by observing ~ 20 / (\Omega_{k0}^2) supernovae over the whole sky.Comment: Extended SNe analysis and corrected some CMB results. Text also extended and references added. 8 pages, 5 figure

    The Statistics of Density Peaks and the Column Density Distribution of the Lyman-Alpha Forest

    Get PDF
    We develop a method to calculate the column density distribution of the Lyman-alpha forest for column densities in the range 1012.5−1014.5cm−210^{12.5} - 10^{14.5} cm^{-2}. The Zel'dovich approximation, with appropriate smoothing, is used to compute the density and peculiar velocity fields. The effect of the latter on absorption profiles is discussed and it is shown to have little effect on the column density distribution. An approximation is introduced in which the column density distribution is related to a statistic of density peaks (involving its height and first and second derivatives along the line of sight) in real space. We show that the slope of the column density distribution is determined by the temperature-density relation as well as the power spectrum on scales 2hMpc−1<k<20hMpc−12 h Mpc^{-1} < k < 20 h Mpc^{-1}. An expression relating the three is given. We find very good agreement between the column density distribution obtained by applying the Voigt-profile-fitting technique to the output of a full hydrodynamic simulation and that obtained using our approximate method for a test model. This formalism then is applied to study a group of CDM as well as CHDM models. We show that the amplitude of the column density distribution depends on the combination of parameters (Ωbh2)2T0−0.7JHI−1(\Omega_b h^2)^2 T_0^{-0.7} J_{HI}^{-1}, which is not well-constrained by independent observations. The slope of the distribution, on the other hand, can be used to distinguish between different models: those with a smaller amplitude and a steeper slope of the power spectrum on small scales give rise to steeper distributions, for the range of column densities we study. Comparison with high resolution Keck data is made.Comment: match accepted version; discussion added: the effect of the shape of the power spectrum on the slope of the column density distributio
    • …
    corecore