1,676 research outputs found
Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms
We investigate the dynamics of neutral atoms in a 2D optical lattice which
traps two distinct internal states of the atoms in different columns. Two Raman
lasers are used to coherently transfer atoms from one internal state to the
other, thereby causing hopping between the different columns. By adjusting the
laser parameters appropriately we can induce a non vanishing phase of particles
moving along a closed path on the lattice. This phase is proportional to the
enclosed area and we thus simulate a magnetic flux through the lattice. This
setup is described by a Hamiltonian identical to the one for electrons on a
lattice subject to a magnetic field and thus allows us to study this equivalent
situation under very well defined controllable conditions. We consider the
limiting case of huge magnetic fields -- which is not experimentally accessible
for electrons in metals -- where a fractal band structure, the Hofstadter
butterfly, characterizes the system.Comment: 6 pages, RevTe
Efficient Algorithms for Optimal Control of Quantum Dynamics: The "Krotov'' Method unencumbered
Efficient algorithms for the discovery of optimal control designs for
coherent control of quantum processes are of fundamental importance. One
important class of algorithms are sequential update algorithms generally
attributed to Krotov. Although widely and often successfully used, the
associated theory is often involved and leaves many crucial questions
unanswered, from the monotonicity and convergence of the algorithm to
discretization effects, leading to the introduction of ad-hoc penalty terms and
suboptimal update schemes detrimental to the performance of the algorithm. We
present a general framework for sequential update algorithms including specific
prescriptions for efficient update rules with inexpensive dynamic search length
control, taking into account discretization effects and eliminating the need
for ad-hoc penalty terms. The latter, while necessary to regularize the problem
in the limit of infinite time resolution, i.e., the continuum limit, are shown
to be undesirable and unnecessary in the practically relevant case of finite
time resolution. Numerical examples show that the ideas underlying many of
these results extend even beyond what can be rigorously proved.Comment: 19 pages, many figure
Data compression for the First G-APD Cherenkov Telescope
The First Geiger-mode Avalanche photodiode (G-APD) Cherenkov Telescope (FACT)
has been operating on the Canary island of La Palma since October 2011.
Operations were automated so that the system can be operated remotely. Manual
interaction is required only when the observation schedule is modified due to
weather conditions or in case of unexpected events such as a mechanical
failure. Automatic operations enabled high data taking efficiency, which
resulted in up to two terabytes of FITS files being recorded nightly and
transferred from La Palma to the FACT archive at ISDC in Switzerland. Since
long term storage of hundreds of terabytes of observations data is costly, data
compression is mandatory. This paper discusses the design choices that were
made to increase the compression ratio and speed of writing of the data with
respect to existing compression algorithms.
Following a more detailed motivation, the FACT compression algorithm along
with the associated I/O layer is discussed. Eventually, the performances of the
algorithm is compared to other approaches.Comment: 17 pages, accepted to Astronomy and Computing special issue on
astronomical file format
FACT - Monitoring Blazars at Very High Energies
The First G-APD Cherenkov Telescope (FACT) was built on the Canary Island of
La Palma in October 2011 as a proof of principle for silicon based photosensors
in Cherenkov Astronomy. The scientific goal of the project is to study the
variability of active galatic nuclei (AGN) at TeV energies. Observing a small
sample of TeV blazars whenever possible, an unbiased data sample is collected.
This allows to study the variability of the selected objects on timescales from
hours to years. Results from the first three years of monitoring will be
presented. To provide quick flare alerts to the community and trigger
multi-wavelength observations, a quick look analysis has been installed on-site
providing results publicly online within the same night. In summer 2014,
several flare alerts were issued. Results of the quick look analysis are
summarized.Comment: 2014 Fermi Symposium proceedings - eConf C14102.
Interakcije nekih plijesni i aflatoksinogenog soja Asspergillus flavus NRRL 3251
The objective of this study was to evaluate biotic interaction between some mould species and active producer of aflatoxin B1 Aspergillus flavus NRRL 3251, co-cultured in yeast-extract sucrose (YES) broth. Twenty-five mould strains of Alternaria spp., Cladosporium spp., Mucor spp., A. flavus and A. niger, used as biocompetitive agents, were isolated from outdoor and indoor airborne fungi, scrapings of mouldy household walls, and from stored and post-harvest maize. Aflatoxin B1 was extracted from mould biomasses with chloroform and detected using the multitoxin TLC method. The results confirm antagonistic interaction between all strains tested. With Alternaria spp. and Cladosporium spp., aflatoxin B1 production decreased 100 %, compared to detection in a single culture of A. flavus NRRL 3251 (Cmean=18.7 µg mL-1). In mixed cultures with Mucor spp., aflatoxin B1 levels dropped to (5.6-9.3) µg mL-1, and the inhibition was from 50 % to 70 %. Four of five aflatoxin non-producing strains of A. flavus interfered with aflatoxin production in mixed culture, and reduced AFB1 productivity by 100 %. One strain showed a lower efficacy in inhibiting AFB1 production (80 %) with a detectable amount of AFB1 3.7 µg mL-1 when compared to control. A decrease in toxin production was also observed in dual cultivation with A. niger strains. It resulted in 100 % reduction in three strains), 90 % reduction in one strain (Cmean=1.9 µg mL-1) and 80 % reduction in one strain (Cmean=3.7 µg mL-1) inhibition.Cilj rada bio je procijeniti biotske interakcije između sojeva različitih vrsta plijesni i kontrolnog soja Aspergillus flavus NRRL 3251, producenta aflatoksina B1 (AFB1). Inhibitorno djelovanje u miješanim kulturama na tvorbu AFB1 ispitano je na dvadeset pet sojeva Alternaria, Cladosporium, Mucor i Aspergillus vrsta izoliranih iz zraka, strugotina pljesnivih zidova te uskladištenog i prezimljenog kukuruza. Biosinteze su provedene u tekućoj hranjivoj podlozi s kvaščevim ekstraktom (YESbujon). Ekstrakcije AFB1 iz biomase izvršene su multitoksinskom metodom tankoslojne kromatografije. Rezultati biotskih interakcija pokazali su antagonistički odnos svih testiranih sojeva. Alternaria i Cladosporium vrste simultano inokulirane sporama A. flavus NRRL 3251 inhibirale su tvorbu AFB1 100 % u odnosu na dokazani toksin u kontrolnoj biosintezi (konc. 18,7 µg mL-1). U miješanim kulturama vrstama roda Mucor dokazane su padajuće koncentracije AFB1 (9,3 µg mL-1, 7,5 µg mL-1 i 5,6 µg mL-1), odnosno inhibicija tvorbe toksina 50 % do 70 %. Atoksinogeni sojevi A. flavus inhibirali su tvorbu AFB1 80 % (1 soj, konc. 3,7 µg mL-1) i 100 % (4 soja). Antagonističko djelovanje prema toksinogenom soju, smanjujući tvorbu AFB1 u rasponu 80 % do 100 % (konc. 1,9 µg mL-1 i 3,7 µg mL-1), dokazano je u uzgojnim biosintezama s A. niger
Quantum states made to measure
Recent progress in manipulating quantum states of light and matter brings
quantum-enhanced measurements closer to prospective applications. The current
challenge is to make quantum metrologic strategies robust against
imperfections.Comment: 4 pages, 3 figures, Commentary for Nature Photonic
Calibration and performance of the photon sensor response of FACT -- The First G-APD Cherenkov telescope
The First G-APD Cherenkov Telescope (FACT) is the first in-operation test of
the performance of silicon photo detectors in Cherenkov Astronomy. For more
than two years it is operated on La Palma, Canary Islands (Spain), for the
purpose of long-term monitoring of astrophysical sources. For this, the
performance of the photo detectors is crucial and therefore has been studied in
great detail. Special care has been taken for their temperature and voltage
dependence implementing a correction method to keep their properties stable.
Several measurements have been carried out to monitor the performance. The
measurements and their results are shown, demonstrating the stability of the
gain below the percent level. The resulting stability of the whole system is
discussed, nicely demonstrating that silicon photo detectors are perfectly
suited for the usage in Cherenkov telescopes, especially for long-term
monitoring purpose
Recommended from our members
Expanding the host range of hepatitis C virus through viral adaptation
Hepatitis C virus (HCV) species tropism is incompletely understood. We have previously shown that at the level of entry, human CD81 and occludin (OCLN) comprise the minimal set of human factors needed for viral uptake into murine cells. As an alternative approach to genetic humanization, species barriers can be overcome by adapting HCV to use the murine orthologues of these entry factors. We previously generated a murine tropic HCV (mtHCV or Jc1/mCD81) strain harboring three mutations within the viral envelope proteins that allowed productive entry into mouse cell lines. In this study, we aimed to characterize the ability of mtHCV to enter and infect mouse hepatocytes in vivo and in vitro Using a highly sensitive, Cre-activatable reporter, we demonstrate that mtHCV can enter mouse hepatocytes in vivo in the absence of any human cofactors. Viral entry still relied on expression of mouse CD81 and SCARB1 and was more efficient when mouse CD81 and OCLN were overexpressed. HCV entry could be significantly reduced in the presence of anti-HCV E2 specific antibodies, suggesting that uptake of mtHCV is dependent on viral glycoproteins. Despite mtHCV's ability to enter murine hepatocytes in vivo, we did not observe persistent infection, even in animals with severely blunted type I and III interferon signaling and impaired adaptive immune responses. Altogether, these results establish proof of concept that the barriers limiting HCV species tropism can be overcome by viral adaptation. However, additional viral adaptations will likely be needed to increase the robustness of a murine model system for hepatitis C. IMPORTANCE: At least 150 million individuals are chronically infected with HCV and are at risk of developing serious liver disease. Despite the advent of effective antiviral therapy, the frequency of chronic carriers has only marginally decreased. A major roadblock in developing a vaccine that would prevent transmission is the scarcity of animal models that are susceptible to HCV infection. It is poorly understood why HCV infects only humans and chimpanzees. To develop an animal model for hepatitis C, previous efforts focused on modifying the host environment of mice, for example, to render them more susceptible to HCV infection. Here, we attempted a complementary approach in which a laboratory-derived HCV variant was tested for its ability to infect mice. We demonstrate that this engineered HCV strain can enter mouse liver cells but does not replicate efficiently. Thus, additional adaptations are likely needed to construct a robust animal model for HCV
Probing the quantum vacuum with an artificial atom in front of a mirror
Quantum fluctuations of the vacuum are both a surprising and fundamental
phenomenon of nature. Understood as virtual photons flitting in and out of
existence, they still have a very real impact, \emph{e.g.}, in the Casimir
effects and the lifetimes of atoms. Engineering vacuum fluctuations is
therefore becoming increasingly important to emerging technologies. Here, we
shape vacuum fluctuations using a "mirror", creating regions in space where
they are suppressed. As we then effectively move an artificial atom in and out
of these regions, measuring the atomic lifetime tells us the strength of the
fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a
factor of 50 below what would be expected without the mirror, demonstrating
that we can hide the atom from the vacuum
- …