3,818 research outputs found

    Renormalization of Boundary Fermions and World-Volume Potentials on D-branes

    Get PDF
    We consider a sigma model formulation of open string theory with boundary fermions carrying Chan-Paton charges at the string ends. This formalism is particularly suitable for studying world-volume potentials on D-branes. We perform explicit two-loop sigma model computations of the potential T-dual to the non-abelian Born-Infeld action. We also discuss the world-volume couplings of NS fluxes which are responsible for Myers' dielectric effect.Comment: 17 pages, 8 figure

    Dynamic Programming for Graphs on Surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2^{O(k log k)} n steps. Our approach combines tools from topological graph theory and analytic combinatorics. In particular, we introduce a new type of branch decomposition called "surface cut decomposition", generalizing sphere cut decompositions of planar graphs introduced by Seymour and Thomas, which has nice combinatorial properties. Namely, the number of partial solutions that can be arranged on a surface cut decomposition can be upper-bounded by the number of non-crossing partitions on surfaces with boundary. It follows that partial solutions can be represented by a single-exponential (in the branchwidth k) number of configurations. This proves that, when applied on surface cut decompositions, dynamic programming runs in 2^{O(k)} n steps. That way, we considerably extend the class of problems that can be solved in running times with a single-exponential dependence on branchwidth and unify/improve most previous results in this direction.Comment: 28 pages, 3 figure

    Dynamic programming for graphs on surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2O(k·log k). Our approach combines tools from topological graph theory and analytic combinatorics.Postprint (updated version

    Multivariate Discriminant Function Analyses of the Mandible in American Caucasoid and American Negroid Populations

    Get PDF
    The purpose of this thesis is to develop a statistical method whereby the race and sex of an unknown individual may be ascertained from measurements taken from the mandible alone. Twenty-five such measurements were obtained from 160 mandibles representing, equally, American male and female Negro and Caucasian individuals. The skeletal collection used was the Terry collection at the Smithsonian Institution in Washington, D.C. The data obtained were analyzed by nine separate discriminate functions representing various aspects of the mandible, including one which discriminated the samples by race only. To test the significance and reliability of using such a procedure for forensic purposes, 13 test specimens were obtained from the University of Tennessee Anthropology Department forensic cases. These were subjected to discriminant function analysis which correctly identified anywhere from 38.5% to 76.9% of them (as opposed to a classification range of 37.5% to 97.5% in the reference samples themselves). Further, using the discriminant function which classified only race, a test was set-up to ascertain the reliability of using such skeletal collections as the Terry samples to obtain data for use in establishing discriminant functions which test mandibular specimens from groups which may be temporally or genetically removed from the reference samples

    A novel non-intercepting bunch shape monitor for the high current LINAC at GSI

    Get PDF

    Development of a carbon fibre composite active mirror: Design and testing

    Full text link
    Carbon fibre composite technology for lightweight mirrors is gaining increasing interest in the space- and ground-based astronomical communities for its low weight, ease of manufacturing, excellent thermal qualities and robustness. We present here first results of a project to design and produce a 27 cm diameter deformable carbon fibre composite mirror. The aim was to produce a high surface form accuracy as well as low surface roughness. As part of this programme, a passive mirror was developed to investigate stability and coating issues. Results from the manufacturing and polishing process are reported here. We also present results of a mechanical and thermal finite element analysis, as well as early experimental findings of the deformable mirror. Possible applications and future work are discussed.Comment: Accepted by Optical Engineering. Figures 1-7 on http://www.star.ucl.ac.uk/~sk/OEpaper_files

    Retrofitting of a non-invasive Bunch Shape Monitor for GSI LINACs

    Get PDF

    Owner perceptions of their cat's quality of life when treated with a modified University of Wisconsin-Madison protocol for lymphoma

    Get PDF
    The objectives of this study were to assess owner perceptions of their cat’s quality of life during treatment for lymphoma with a doxorubicin-containing multi-agent chemotherapy protocol, whether various health-related parameters correlated with quality of life scores, and to assess owner satisfaction with the protocol

    Loop Equation in Two-dimensional Noncommutative Yang-Mills Theory

    Get PDF
    The classical analysis of Kazakov and Kostov of the Makeenko-Migdal loop equation in two-dimensional gauge theory leads to usual partial differential equations with respect to the areas of windows formed by the loop. We extend this treatment to the case of U(N) Yang-Mills defined on the noncommutative plane. We deal with all the subtleties which arise in their two-dimensional geometric procedure, using where needed results from the perturbative computations of the noncommutative Wilson loop available in the literature. The open Wilson line contribution present in the non-commutative version of the loop equation drops out in the resulting usual differential equations. These equations for all N have the same form as in the commutative case for N to infinity. However, the additional supplementary input from factorization properties allowing to solve the equations in the commutative case is no longer valid.Comment: 20 pages, 3 figures, references added, small clarifications adde

    From stellar to planetary composition: Galactic chemical evolution of Mg/Si mineralogical ratio

    Get PDF
    The main goal of this work is to study element ratios that are important for the formation of planets of different masses. We study potential correlations between the existence of planetary companions and the relative elemental abundances of their host stars. We use a large sample of FGK-type dwarf stars for which precise Mg, Si, and Fe abundances have been derived using HARPS high-resolution and high-quality data. A first analysis of the data suggests that low-mass planet host stars show higher [Mg/Si] ratios, while giant planet hosts present [Mg/Si] that is lower than field stars. However, we found that the [Mg/Si] ratio significantly depends on metallicity through Galactic chemical evolution. After removing the Galactic evolution trend only the difference in the [Mg/Si] elemental ratio between low-mass planet hosts and non-hosts was present in a significant way. These results suggests that low-mass planets are more prevalent around stars with high [Mg/Si]. Our results demonstrate the importance of Galactic chemical evolution and indicate that it may play an important role in the planetary internal structure and composition.Comment: Accepted by A&A (Letter to the Editor
    • …
    corecore