3,388 research outputs found

    Comments on the scalar propagator in AdS x S and the BMN plane wave

    Full text link
    We discuss the scalar propagator on generic AdS_{d+1} x S^{d'+1} backgrounds. For the conformally flat situations and masses corresponding to Weyl invariant actions the propagator is powerlike in the sum of the chordal distances with respect to AdS_{d+1} and S^{d'+1}. In all other cases the propagator depends on both chordal distances separately. We discuss the KK mode summation to construct the propagator in brief. For AdS_5 x S^5 we relate our propagator to the expression in the BMN plane wave limit and find a geometric interpretation of the variables occurring in the known explicit construction on the plane wave.Comment: 7 pages, Fortsch.Phys. style, Talk given at 36th International Symposium Ahrenshoop on the Theory of Elementary Particles: Recent Developments in String/M- Theory and Field Theory, Wernsdorf, Germany, 26-30 Aug 200

    Development of a carbon fibre composite active mirror: Design and testing

    Full text link
    Carbon fibre composite technology for lightweight mirrors is gaining increasing interest in the space- and ground-based astronomical communities for its low weight, ease of manufacturing, excellent thermal qualities and robustness. We present here first results of a project to design and produce a 27 cm diameter deformable carbon fibre composite mirror. The aim was to produce a high surface form accuracy as well as low surface roughness. As part of this programme, a passive mirror was developed to investigate stability and coating issues. Results from the manufacturing and polishing process are reported here. We also present results of a mechanical and thermal finite element analysis, as well as early experimental findings of the deformable mirror. Possible applications and future work are discussed.Comment: Accepted by Optical Engineering. Figures 1-7 on http://www.star.ucl.ac.uk/~sk/OEpaper_files

    Spin transition in Gd3_3N@C80_{80}, detected by low-temperature on-chip SQUID technique

    Get PDF
    We present a magnetic study of the Gd3_3N@C80_{80} molecule, consisting of a Gd-trimer via a Nitrogen atom, encapsulated in a C80_{80} cage. This molecular system can be an efficient contrast agent for Magnetic Resonance Imaging (MRI) applications. We used a low-temperature technique able to detect small magnetic signals by placing the sample in the vicinity of an on-chip SQUID. The technique implemented at NHMFL has the particularity to operate in high magnetic fields of up to 7 T. The Gd3_3N@C80_{80} shows a paramagnetic behavior and we find a spin transition of the Gd3_3N structure at 1.2 K. We perform quantum mechanical simulations, which indicate that one of the Gd ions changes from a 8S7/2^8S_{7/2} state (L=0,S=7/2L=0, S=7/2) to a 7F6^7F_{6} state (L=S=3,J=6L=S=3, J=6), likely due to a charge transfer between the C80_{80} cage and the ion

    Meta-Leadership and National Emergency Preparedness: Strategies to Build Government Connectivity

    Get PDF
    The acute threat of internationally driven and homeland-directed terrorism has changed the rules and expectations for governmental action, interaction, and willpower. Unprecedented coordination of resources, information, and expertise is required in the face of new hazards emanating from an elusive and a yet active and well-organized network of hostile terrorist cells (Danzig, 2003). While the period since 9/11 has witnessed a spate of governmental reorganization and restructuring—the most visible in the speedy formation of the Department of Homeland Security and the 9/11 Commission recommended revamping of intelligence agencies1 (National Commission on Terrorist Attacks, 2004)—the hoped for change in behavior and impact has lagged far behind shifts in organizational form and mandate2 (Mintz, 2005). This reluctance to change is alarming given the enormity of the immediate terrorist danger and the consequences of less-than-optimal prevention, emergency preparedness, and response. How can this resistance to change be understood, and what can be done strategically to accelerate realization of full national preparedness potential

    Accumulation horizons and period-adding in optically injected semiconductor lasers

    Get PDF
    We study the hierarchical structuring of islands of stable periodic oscillations inside chaotic regions in phase diagrams of single-mode semiconductor lasers with optical injection. Phase diagrams display remarkable {\it accumulation horizons}: boundaries formed by the accumulation of infinite cascades of self-similar islands of periodic solutions of ever-increasing period. Each cascade follows a specific period-adding route. The riddling of chaotic laser phases by such networks of periodic solutions may compromise applications operating with chaotic signals such as e.g. secure communications.Comment: 4 pages, 4 figures, laser phase diagrams, to appear in Phys. Rev. E, vol. 7

    On the AdS Higher Spin / O(N) Vector Model Correspondence: degeneracy of the holographic image

    Full text link
    We explore the conjectured duality between the critical O(N) vector model and minimal bosonic massless higher spin (HS) theory in AdS. In the boundary free theory, the conformal partial wave expansion (CPWE) of the four-point function of the scalar singlet bilinear is reorganized to make it explicitly crossing-symmetric and closed in the singlet sector, dual to the bulk HS gauge fields. We are able to analytically establish the factorized form of the fusion coefficients as well as the two-point function coefficient of the HS currents. We insist in directly computing the free correlators from bulk graphs with the unconventional branch. The three-point function of the scalar bilinear turns out to be an "extremal" one at d=3. The four-leg bulk exchange graph can be precisely related to the CPWs of the boundary dual scalar and its shadow. The flow in the IR by Legendre transforming at leading 1/N, following the pattern of double-trace deformations, and the assumption of degeneracy of the hologram lead to the CPWE of the scalar four-point function at IR. Here we confirm some previous results, obtained from more involved computations of skeleton graphs, as well as extend some of them from d=3 to generic dimension 2<d<4.Comment: 22 pages, 5 figure

    Properties of branes in curved spacetimes

    Full text link
    A generic property of curved manifolds is the existence of focal points. We show that branes located at focal points of the geometry satisfy special properties. Examples of backgrounds to which our discussion applies are AdS_m x S^n and plane wave backgrounds. As an example, we show that a pair of AdS_2 branes located at the north and south pole of the S^5 in AdS_5 x S^5 are half supersymmetric and that they are dual to a two-monopole solution of N=4 SU(N) SYM theory. Our second example involves spacelike branes in the (Lorentzian) plane wave. We develop a modified lightcone gauge for the open string channel, analyze in detail the cylinder diagram and establish open-closed duality. When the branes are located at focal points of the geometry the amplitude acquires most of the characteristics of flat space amplitudes. In the open string channel the special properties are due to stringy modes that become massless.Comment: 41 pages; v2:typos corrected, ref adde

    Conformal boundary and geodesics for AdS5Ă—S5AdS_5\times S^5 and the plane wave: Their approach in the Penrose limit

    Full text link
    Projecting on a suitable subset of coordinates, a picture is constructed in which the conformal boundary of AdS5Ă—S5AdS_5\times S^5 and that of the plane wave resulting in the Penrose limit are located at the same line. In a second line of arguments all AdS5Ă—S5AdS_5\times S^5 and plane wave geodesics are constructed in their integrated form. Performing the Penrose limit, the approach of null geodesics reaching the conformal boundary of AdS5Ă—S5AdS_5\times S^5 to that of the plane wave is studied in detail. At each point these null geodesics of AdS5Ă—S5AdS_5\times S^5 form a cone which degenerates in the limit.Comment: some statements refined, chapter 5 rewritten to make it more precise, some typos correcte

    Electron impact double ionization of helium from classical trajectory calculations

    Full text link
    With a recently proposed quasiclassical ansatz [Geyer and Rost, J. Phys. B 35 (2002) 1479] it is possible to perform classical trajectory ionization calculations on many electron targets. The autoionization of the target is prevented by a M\o{}ller type backward--forward propagation scheme and allows to consider all interactions between all particles without additional stabilization. The application of the quasiclassical ansatz for helium targets is explained and total and partially differential cross sections for electron impact double ionization are calculated. In the high energy regime the classical description fails to describe the dominant TS1 process, which leads to big deviations, whereas for low energies the total cross section is reproduced well. Differential cross sections calculated at 250 eV await their experimental confirmation.Comment: LaTeX, 22 pages, 10 figures, submitted to J. Phys.
    • …
    corecore