279 research outputs found

    Interactions Between Teachers’ Attribution for Student Learning and Implementation of Evidence-Based Practices

    Get PDF
    This study investigated interactions between evidence-based practices implemented and attributions of factors contributing to achievement of student learning objectives. Conducted in three school districts in a mid-Atlantic state, 78 teachers completed an end-of-year survey. Internal attributions were significantly correlated with implementation of evidence-based teaching practices in general and in teaching students with disabilities. External attributions were statistically correlated to implementation of evidence- based practices in both reading and teaching students with disabilities. Perceptions of school support were significantly correlated with implementation of evidence-based teaching practices for teaching both reading and writing

    Emerging Techniques in Stratified Designs and Continuous Gradients for Tissue Engineering of Interfaces

    Get PDF
    Interfacial tissue engineering is an emerging branch of regenerative medicine, where engineers are faced with developing methods for the repair of one or many functional tissue systems simultaneously. Early and recent solutions for complex tissue formation have utilized stratified designs, where scaffold formulations are segregated into two or more layers, with discrete changes in physical or chemical properties, mimicking a corresponding number of interfacing tissue types. This method has brought forth promising results, along with a myriad of regenerative techniques. The latest designs, however, are employing “continuous gradients” in properties, where there is no discrete segregation between scaffold layers. This review compares the methods and applications of recent stratified approaches to emerging continuously graded methods

    Osteochondral Interface Regeneration of the Rabbit Mandibular Condyle with Bioactive Signal Gradients

    Get PDF
    PURPOSE Tissue engineering solutions focused on the temporomandibular joint (TMJ) have expanded in number and variety over the past decade to address the treatment of TMJ disorders. The existing literature on approaches for healing small defects in the TMJ condylar cartilage and subchondral bone, however, is sparse. The purpose of this study was thus to evaluate the performance of a novel gradient-based scaffolding approach to regenerate osteochondral defects in the rabbit mandibular condyle. MATERIALS AND METHODS Miniature bioactive plugs for regeneration of small mandibular condylar defects in New Zealand White rabbits were fabricated. The plugs were constructed from poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres with a gradient transition between cartilage-promoting and bone-promoting growth factors. RESULTS At six weeks of healing, results suggested that the implants provided support for the neo-synthesized tissue as evidenced by histology and 9.4T magnetic resonance imaging. CONCLUSION The inclusion of bioactive factors in a gradient-based scaffolding design is a promising new treatment strategy for focal defect repair in the TMJ

    Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly(ethylene glycol) diacrylate

    Get PDF
    We recently introduced agarose-poly(ethylene glycol) diacrylate (PEGDA) interpenetrating network (IPN) hydrogels to cartilage tissue engineering that were able to encapsulate viable cells and provide a significant improvement in mechanical performance relative to its two constituent hydrogels. The goal of the current study was to develop a novel synthesis protocol to incorporate methacrylated chondroitin sulfate (MCS) into the IPN design hypothesized to improve cell viability and biosynthesis. The IPN was formed by encapsulating porcine chondrocytes in agarose, soaking the construct in a solution of 1:10 MCS:PEGDA, which was then photopolymerized to form a copolymer network as the second network. The IPN with incorporated CS (CS-IPN) (~0.5 wt%) resulted in a 4- to 5-fold increase in the compressive elastic modulus relative to either the PEGDA or agarose gels. After 6 weeks of in vitro culture, more than 50% of the encapsulated chondrocytes remained viable within the CS-modified IPN, in contrast to 35% viability observed in the unmodified. At week 6, the CS-IPN had significantly higher normalized GAG contents (347 ± 34 µg/µg) than unmodified IPNs (158 ± 27 µg/µg, P < 0.05). Overall, the approach of incorporating biopolymers such as CS from native tissue may provide favorable micro-environment and beneficial signals to cells to enhance their overall performance in IPNs

    Osteochondral Interface Tissue Engineering Using Macroscopic Gradients of Bioactive Signals

    Get PDF
    Continuous gradients exist at osteochondral interfaces, which may be engineered by applying spatially patterned gradients of biological cues. In the present study, a protein-loaded microsphere-based scaffold fabrication strategy was applied to achieve spatially and temporally controlled delivery of bioactive signals in three-dimensional (3D) tissue engineering scaffolds. Bone morphogenetic protein-2 and transforming growth factor-β1-loaded poly(d,llactic- co-glycolic acid) microspheres were utilized with a gradient scaffold fabrication technology to produce microsphere-based scaffolds containing opposing gradients of these signals. Constructs were then seeded with human bone marrow stromal cells (hBMSCs) or human umbilical cord mesenchymal stromal cells (hUCMSCs), and osteochondral tissue regeneration was assessed in gradient scaffolds and compared to multiple control groups. Following a 6-week cell culture, the gradient scaffolds produced regionalized extracellular matrix, and outperformed the blank control scaffolds in cell number, glycosaminoglycan production, collagen content, alkaline phosphatase activity, and in some instances, gene expression of major osteogenic and chondrogenic markers. These results suggest that engineered signal gradients may be beneficial for osteochondral tissue engineering

    Effect of different sintering methods on bioactivity and release of proteins from PLGA microspheres

    Get PDF
    Macromolecule release from poly(d,l-lactide-co-glycolide) (PLGA) microspheres has been well-characterized, and is a popular approach for delivering bioactive signals from tissue-engineered scaffolds. However, the effect of some processing solvents, sterilization, and mineral incorporation (when used in concert) on long-term release and bioactivity has seldom been addressed. Understanding these effects is of significant importance for microsphere-based scaffolds, given that these scaffolds are becoming increasingly more popular, yet growth factor activity following sintering and/or sterilization is heretofore unknown. The current study evaluated the 6-week release of transforming growth factor (TGF)-β3 and bone morphogenetic protein (BMP)-2 from PLGA and PLGA/hydroxyapatite (HAp) microspheres following exposure to ethanol (EtOH), dense phase carbon dioxide (CO2), or ethylene oxide (EtO). EtO was chosen based on its common use in scaffold sterilization, whereas EtOH and CO2 were chosen given their importance in sintering microspheres together to create scaffolds. Release supernatants were then used in an accelerated cell stimulation study with human bone marrow stromal cells (hBMSCs) with monitoring of gene expression for major chondrogenic and osteogenic markers. Results indicated that in microspheres without HAp, EtOH exposure led to the greatest amount of delivery, whilst those treated with CO2 delivered the least growth factor. In contrast, formulations with HAp released almost half as much protein, regardless of EtOH or CO2 exposure. Notably, EtO exposure was not found to significantly affect the amount of protein released. Cell stimulation studies demonstrated that eluted protein samples performed similarly to positive controls in PLGA-only formulations, and ambiguously in PLGA/HAp composites. In conclusion, the use of EtOH, subcritical CO2, and EtO in microsphere-based scaffolds may have only slight adverse effects, and possibly even desirable effects in some cases, on protein availability and bioactivity

    La perla

    Get PDF
    Copia digital. Valladolid : Junta de Castilla y LeĂłn. ConsejerĂ­a de Cultura y Turismo, 2009-201

    Three-dimensional Macroscopic Scaffolds With a Gradient in Stiffness for Functional Regeneration of Interfacial Tissues

    Get PDF
    A novel approach has been demonstrated to construct biocompatible, macroporous 3-D tissue engineering scaffolds containing a continuous macroscopic gradient in composition that yields a stiffness gradient along the axis of the scaffold. Polymeric microspheres, made of poly(d,l-lactic-co-glycolic acid) (PLGA), and composite microspheres encapsulating a higher stiffness nano-phase material (PLGA encapsulating CaCO3 or TiO2 nanoparticles) were used for the construction of microsphere-based scaffolds. Using controlled infusion of polymeric and composite microspheres, gradient scaffolds displaying an anisotropic macroscopic distribution of CaCO3/TiO2 were fabricated via an ethanol sintering technique. The controllable mechanical characteristics and biocompatible nature of these scaffolds warrants further investigation for interfacial tissue engineering applications

    Advance care planning uptake among patients with severe lung disease: A randomised patient preference trial of a nurse-led, facilitated advance care planning intervention

    Get PDF
    Objective Advance care planning (ACP) clarifies goals for future care if a patient becomes unable to communicate their own preferences. However, ACP uptake is low, with discussions often occurring late. This study assessed whether a systematic nurse-led ACP intervention increases ACP in patients with advanced respiratory disease. Design A multicentre open-label randomised controlled trial with preference arm. Setting Metropolitan teaching hospital and a rural healthcare network. Participants 149 participants with respiratory malignancy, chronic obstructive pulmonary disease or interstitial lung disease. Intervention Nurse facilitators offered facilitated ACP discussions, prompted further discussions with doctors and loved ones, and assisted participants to appoint a substitute medical decision-maker (SDM) and complete an advance directive (AD). Outcome measures The primary measure was formal (AD or SDM) or informal (discussion with doctor) ACP uptake assessed by self-report (6 months) and medical notes audit. Secondary measures were the factors predicting baseline readiness to undertake ACP, and factors predicting postintervention ACP uptake in the intervention arm. Results At 6 months, formal ACP uptake was significantly higher (p&lt;0.001) in the intervention arm (54/106, 51%), compared with usual care (6/43, 14%). ACP discussions with doctors were also significantly higher (p&lt;0.005) in the intervention arm (76/106, 72%) compared with usual care (20/43, 47%). Those with a strong preference for the intervention were more likely to complete formal ACP documents than those randomly allocated. Increased symptom burden and preference for the intervention predicted later ACP uptake. Social support was positively associated with ACP discussion with loved ones, but negatively associated with discussion with doctors. Conclusions Nurse-led facilitated ACP is acceptable to patients with advanced respiratory disease and effective in increasing ACP discussions and completion of formal documents. Awareness of symptom burden, readiness to engage in ACP and relevant psychosocial factors may facilitate effective tailoring of ACP interventions and achieve greater uptake. Trial registration number ACTRN12614000255684. © Published by the BMJ Publishing Group Limite

    Intra-amniotic delivery of CFTR-expressing adenovirus does not reverse cystic fibrosis phenotype in inbred CFTR-knockout mice

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright © 2008 The American Society of Gene Therapy.Due to its early onset and severe prognosis, cystic fibrosis (CF) has been suggested as a candidate disease for in utero gene therapy. In 1997, a study was published claiming that to how transient prenatal expression of CF transmembrane conductance regulator (CFTR) from an in utero –injected adenovirus vector could achieve permanent reversal of the CF intestinal pathology in adult CF knockout mice, despite the loss of CFTR transgene expression by birth. This would imply that the underlying cause of CF is a prenatal defect for which lifelong cure can be achieved by transient prenatal expression of CFTR. Despite criticism at the time of publication, no independent verification of this contentious finding has been published so far. This is vital for the development of future therapeutic strategies as it may determine whether CF gene therapy should be performed prenatally or postnatally. We therefore reinvestigated this finding with an identical adenoviral vector and a knockout CF mouse line (CftrtmlCam) with a completely inbred genetic background to eliminate any effects due to genetic variation. After delivery of the CFTR-expressing adenovirus to the fetal mouse, both vector DNA and transgenic CFTR expression were detected in treated animals postpartum but statistically no significant difference in survival was observed between the Cftr–/– mice treated with the CFTR-adenovirus and those treated with the control vector.Sport Aiding Medical Research for Kids, the Cystic Fibrosis Trust, and the Katharine Dormandy Trust
    • …
    corecore