1,670 research outputs found

    Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence

    Full text link
    A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., ITG turbulence) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau-damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the "anti-phase-mixing" effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wave-number space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the "critical balance" between linear and nonlinear timescales (which for high Hermite moments splits into two thresholds, one demarcating the wave-number region where phase mixing predominates, the other where plasma echo does).Comment: 45 pages (single-column), 3 figures, replaced with version published in JP

    Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics

    Full text link
    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., Astrophys. J. Suppl. 182:310 (2009)]. Two main applications of these equations are magnetised (Alfvenic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge-Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag-Tang-type decaying turbulence, both in fluid and kinetic regimes.Comment: 42 pages, 15 figures, submitted to J. Comp. Phy

    Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas

    Get PDF
    This letter presents the first ab initio, fully electromagnetic, kinetic simulations of magnetized turbulence in a homogeneous, weakly collisional plasma at the scale of the ion Larmor radius (ion gyroscale). Magnetic and electric-field energy spectra show a break at the ion gyroscale; the spectral slopes are consistent with scaling predictions for critically balanced turbulence of Alfven waves above the ion gyroscale (spectral index -5/3) and of kinetic Alfven waves below the ion gyroscale (spectral indices of -7/3 for magnetic and -1/3 for electric fluctuations). This behavior is also qualitatively consistent with in situ measurements of turbulence in the solar wind. Our findings support the hypothesis that the frequencies of turbulent fluctuations in the solar wind remain well below the ion cyclotron frequency both above and below the ion gyroscale.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Transition to subcritical turbulence in a tokamak plasma

    Full text link
    Tokamak turbulence, driven by the ion-temperature gradient and occurring in the presence of flow shear, is investigated by means of local, ion-scale, electrostatic gyrokinetic simulations (with both kinetic ions and electrons) of the conditions in the outer core of the Mega-Ampere Spherical Tokamak (MAST). A parameter scan in the local values of the ion-temperature gradient and flow shear is performed. It is demonstrated that the experimentally observed state is near the stability threshold and that this stability threshold is nonlinear: sheared turbulence is subcritical, i.e. the system is formally stable to small perturbations, but, given a large enough initial perturbation, it transitions to a turbulent state. A scenario for such a transition is proposed and supported by numerical results: close to threshold, the nonlinear saturated state and the associated anomalous heat transport are dominated by long-lived coherent structures, which drift across the domain, have finite amplitudes, but are not volume filling; as the system is taken away from the threshold into the more unstable regime, the number of these structures increases until they overlap and a more conventional chaotic state emerges. Whereas this appears to represent a new scenario for transition to turbulence in tokamak plasmas, it is reminiscent of the behaviour of other subcritically turbulent systems, e.g. pipe flows and Keplerian magnetorotational accretion flows.Comment: 16 pages, 5 figures, accepted to Journal of Plasma Physic

    Multiscale Gyrokinetics for Rotating Tokamak Plasmas: Fluctuations, Transport and Energy Flows

    Full text link
    This paper presents a complete theoretical framework for plasma turbulence and transport in tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio of the gyroradius to the equilibrium scale length. Proceeding order-by-order in this expansion, a framework for plasma turbulence is developed. It comprises an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equillibrium is obtained from the Grad-Shafranov equation for a rotating plasma and the slow (resistive) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the high-flow gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local cascade of free energy. Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical corrections and the fluctuations act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived. Total energy is conserved and there is no net turbulent heating. Entropy is produced by the action of fluxes flattening gradients, Ohmic heating, and the equilibration of mean temperatures. Finally, this framework is condensed, in the low-Mach-number limit, to a concise set of equations suitable for numerical implementation.Comment: 113 pages, 3 figure

    Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence

    Full text link
    Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear decorrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.Comment: Revtex, 4 pages, 3 figures; replaced to match published versio
    corecore