24 research outputs found

    Microcompression experiments on glasses ‐ strain rate sensitive cracking behavior

    Get PDF
    Figure 11 – microcompression experiments on glasses showing stable crack growth (a) and reversible deformation (b) It is well known that the mechanical properties of glasses are closely related to their atomic structure. The exact structure-property-relationship, however, is only poorly understood even for fundamental mechanisms like shear and densification. Nanomechanical test methods like micropillar compression and nano indentation can help fill this gap. In this study a sodium-boro-silicate glass is quenched from different temperatures to induce changes in the atomic structure. Micropillar compression was used to introduce plastic deformation into these glasses at room temperature under a uniaxial stress state. By changing the strain rate it is shown that deformation shifts from completely reversible deformation, to stable crack growth, and finally brittle failure. It is shown that by changing the glass structure, the strain rates corresponding to these deformation regimes are shifted. Finally, the occurrence of shear and densification is discussed. These findings are analysed against the background of the glass structure. Please click Additional Files below to see the full abstract

    Using impact‐nanoindentation to test glasses at high strain rates and room temperature

    Get PDF
    In many daily applications glasses are indispensable, and novel applications demanding improved strength and crack resistance are appearing continuously. Up to now, the fundamental mechanical processes in glasses subjected to high strain rates at room temperature are largely unknown and thus guidelines for one of the major failure conditions of glass components are non-existent. Here, we elucidate this important regime for the first time using glasses ranging from a dense metallic glass to open fused silica by impact as well as quasi-static nano-indentation. We show that towards high strain rates, shear deformation becomes the dominant mechanism in all glasses accompanied by Non-Newtonian behavior evident in a drop of viscosity with increasing rate covering eight orders of magnitude. All glasses converge to the same limit stress determined by the theoretical hardness, thus giving the first experimental and quantitative evidence that Non-Newtonian shear flow occurs at the theoretical strength at room temperature

    Metal ions and their interactions in covalent to ionic glass systems: a spectroscopic study

    Get PDF
    The cumulative thesis is based on 21 publications and describes different aspects of the glass structure in very different glass systems. The role of conventional glass formers, such as SiO2, B2O3, and P2O5 is discussed for changes in the coordination, changes in the fraction of bridging and non-bridging oxygen ions, and in regard to the interconnectivity of multicomponent systems. The impact of various modifier cations, which by themselves do not form glasses, on the basic glass network is discussed; as is the contribution these cations have on the network stability through cross-linking. The thesis compares the full concentration range of modifier ions in glasses; starting from very low dopant concentrations, where dopants act as probe ions or as active coloring or luminescing agents, to higher concentrations where preferential bonding and clustering of these ions impacts the glass structure, all the way to even higher concentrations where cation oxides are an integral part of the glass structure and thus fundamental constituents of the glass itself. Optical (absorption or photo-luminescence) and ESR spectroscopy can be used in the identification of the oxidation state and coordination of transition metal ions in glasses. Preferential bonding of dopants or of certain glass modifier cations is studied, as is preferential bonding between conventional network formers. Raman, IR and NMR spectroscopies in the low alkali borosilicate system show for example preferential bonding between tetrahedral borate units to borate entities (tetrahedral or trigonal) rather than to silicate tetrahedra. Modifications of the glass structure depending on the thermal history of a sample, after external impact such as irradiation, laser modification or indentation are discussed, as are surface modifications of archaeological glass samples from the late bronze age.Die auf 21 Veröffentlichungen beruhende kumulative Habilitationsschrift beschreibt die Glasstruktur sehr unterschiedlicher Glassysteme. Die Rolle konventioneller Glasbildner, wie SiO2, B2O3 und P2O5, wird in Bezug auf die VerknĂŒpfung sowie in Hinblick auf die Wirkung verschiedener Netzwerkwandler diskutiert. Neben VerĂ€nderungen, die durch die Zugabe von Wandleroxiden im Netzwerk hervorgerufen werden, wurde auch der Beitrag untersucht, den diese Ionen zur gesamten NetzwerkstabilitĂ€t beisteuern, indem sie die Glasbildner miteinander vernetzen. Der gesamte Konzentrationsbereich verschiedener zugegebener Metalloxide wird erörtert. Beginnend mit niedrigen Dotierungen im Spurenbereich, wie Indikatorionen oder aktive Dotanden (Chromophore oder Luminophore), zu immer höhere Konzentrationen werden schließlich auch GlĂ€ser behandelt, in denen die zugegebenen Metalloxide ein integraler Bestandteil der GlĂ€ser sind und damit nun selber als Glasbildner fungieren. FĂŒr die Bestimmung der Oxidationsstufen und Koordinationszahlen verschiedener Übergangsmetallionen werden optische (UV-Vis und Photolumineszenz) sowie ESR Spektroskopie eingesetzt. Vorzugsbindungen in GlĂ€sern werden fĂŒr bestimmte Netzwerkwandler beobachtet, wie z.B. fĂŒr Alkali- und Erdalkali-Ionen, die sich in einigen GlĂ€sern spezifische Liganden fĂŒr die Koordination und den Ladungsausgleich auswĂ€hlen. Weiterhin sind Vorzugsbindungen auch zwischen bestimmten Netzwerkbildnern bekannt. In alkaliarmen BorosilicatglĂ€sern zeigen IR, Raman und NMR Spektroskopie, dass tetraedrische Boratgruppen bevorzugt an anderen Boratgruppen (tertaedrische oder trigonale) anstatt an Silicatgruppen gebunden vorliegen. Modifikationen der Glasstruktur in AbhĂ€ngigkeit der thermischen Vorgeschichte, nach Bestrahlung oder Indentierung, werden ebenso behandelt, wie OberflĂ€chenverĂ€nderungen an archĂ€ologischen Glasproben der spĂ€ten Bronzezeit
    corecore