30 research outputs found
Liver Enzymes and the Development of Posttransplantation Diabetes Mellitus in Renal Transplant Recipients
BACKGROUND: Posttransplantation diabetes mellitus (PTDM) is common in renal transplant recipients (RTR), increasing the risk of graft failure, cardiovascular disease, and mortality. Early detection of a high risk for PTDM is warranted. Because liver function and liver fat are involved, we investigated whether serum liver markers are associated with future PTDM in RTR. METHODS: Between 2001 and 2003, 606 RTR with a functioning allograft beyond the first year after transplantation were included of which 500 participants (56% men; age, 50 ± 12 years) were free of diabetes at baseline and had liver enzyme values (1 missing) available. Serum concentrations of alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), alkaline phosphatase were measured at baseline at 6.0 (6.2-11.5) years posttransplantation. PTDM cases were recorded until April 2012. RESULTS: During median follow-up for 9.6 years (interquartile range [IQR], 6.2-10.2) beyond baseline, 76 (15.2%) patients developed PTDM. Comparing the highest to the lower tertiles, higher liver enzyme activities were significantly related to incident PTDM for ALT (hazard ratio [HR], 2.22; IQR, 1.42-3.48), for GGT (HR, 2.93; IQR, 1.87-4.61), and for alkaline phosphatase (HR, 1.78; IQR, 1.13-2.80). The associations of ALT and GGT with development of PTDM were independent of potential confounders and risk factors, including age, sex, renal function, medication use, lifestyle factors, adiposity, presence of the metabolic syndrome, fasting glucose, HbA1c, proinsulin, and cytomegalovirus status. CONCLUSIONS: Markers for liver function and liver fat in the subclinical range are potential markers for future PTDM, independent of other known risk factors. This may allow for early detection and management of PTDM development
Vitamin C Depletion and All-Cause Mortality in Renal Transplant Recipients
Vitamin C may reduce inflammation and is inversely associated with mortality in the general population. We investigated the association of plasma vitamin C with all-cause mortality in renal transplant recipients (RTR); and whether this association would be mediated by inflammatory biomarkers. Vitamin C, high sensitive C-reactive protein (hs-CRP), soluble intercellular cell adhesion molecule 1 (sICAM-1), and soluble vascular cell adhesion molecule 1 (sVCAM-1) were measured in a cohort of 598 RTR. Cox regression analyses were used to analyze the association between vitamin C depletion (≤28 µmol/L; 22% of RTR) and mortality. Mediation analyses were performed according to Preacher and Hayes’s procedure. At a median follow-up of 7.0 (6.2–7.5) years, 131 (21%) patients died. Vitamin C depletion was univariately associated with almost two-fold higher risk of mortality (Hazard ratio (HR) 1.95; 95% confidence interval (95%CI) 1.35–2.81, p < 0.001). This association remained independent of potential confounders (HR 1.74; 95%CI 1.18–2.57, p = 0.005). Hs-CRP, sICAM-1, sVCAM-1 and a composite score of inflammatory biomarkers mediated 16%, 17%, 15%, and 32% of the association, respectively. Vitamin C depletion is frequent and independently associated with almost two-fold higher risk of mortality in RTR. It may be hypothesized that the beneficial effect of vitamin C at least partly occurs through decreasing inflammation
Fear of Movement and Low Self-Efficacy Are Important Barriers in Physical Activity after Renal Transplantation
Background Physical activity (PA) and exercise are commonly used as preventive measures for cardiovascular disease in the general population, and could be effective in the management of post-transplantation cardiovascular risk. PA levels are low after renal transplantation and very few renal transplant recipients (RTR) meet the PA guidelines. Identification of barriers to regular PA is important to identify targets for intervention to improve PA levels after renal transplantation. We investigated fear of movement and physical self-efficacy as barriers to PA in RTR. Methods RTR were investigated between 2001-2003. The Tampa Score of Kinesiophobia-Dutch Version (TSK-11) was used to assess fear of movement. Physical self-efficacy was measured with the LIVAS-scale. PA was assessed using validated questionnaires (Tecumseh Occupational Activity Questionnaire and the Minnesota Leisure Time Physical Activity Questionnaire). Results A total of 487 RTR (age 51+/-12 years, 55% men) were studied. Median score [interquartile range] on TSK-11 was 22 [17-26]. Low physical self-efficacy (Exp B:0.41[0.31-0.54], p Conclusions This study was the first to examine fear of movement and self-efficacy in relation to PA in RTR. Fear of movement was associated with a low PA level, and the larger part of this relation was mediated by low physical self-efficacy. Both fear of movement and physical self-efficacy level are important targets for intervention during rehabilitation after renal transplantation
Lifestyle intervention to improve quality of life and prevent weight gain after renal transplantation: Design of the Active Care after Transplantation (ACT) randomized controlled trial
BACKGROUND: Low physical activity and reduced physical functioning are common after renal transplantation, resulting in a reduced quality of life. Another common post-transplantation complication is poor cardio-metabolic health, which plays a main role in long-term outcomes in renal transplant recipients (RTR). It is increasingly recognized that weight gain in the first year after transplantation, especially an increase in fat mass, is a highly common contributor to cardio-metabolic risk. The aim of this study is to compare the outcomes of usual care to the effects of exercise alone, and exercise combined with dietary counseling, on physical functioning, quality of life and post-transplantation weight gain in RTR. METHODS: The Active Care after Transplantation study is a multicenter randomized controlled trial with three arms in which RTR from 3 Dutch hospitals are randomized within the first year after transplantation to usual care, to exercise intervention (3 months supervised exercise 2 times per week followed by 12 months active follow-up), or to an exercise + diet intervention, consisting of the exercise training with additional dietary counseling (12 sessions over 15 months by a renal dietician). In total, 219 participants (73 per group) will be recruited. The primary outcome is the subdomain physical functioning of quality of life, (SF-36 PF). Secondary outcomes include other evaluations of quality of life (SF-36, KDQOL-SF, EQ-5D), objective measures of physical functioning (aerobic capacity and muscle strength), level of physical activity, gain in adiposity (body fat percentage by bio-electrical impedance assessment, BMI, waist circumference), and cardiometabolic risk factors (blood pressure, lipids, glucose metabolism). Furthermore, data on renal function, medical history, medication, psychological factors (motivation, kinesiophobia, coping style), nutrition knowledge, nutrition intake, nutrition status, fatigue, work participation, process evaluation and cost-effectiveness are collected. DISCUSSION: Evidence on the effectiveness of an exercise intervention, or an exercise + diet intervention on physical functioning, weight gain and cardiometabolic health in RTR is currently lacking. The outcomes of the present study may help to guide future evidence-based lifestyle care after renal transplantation. TRIAL REGISTRATION: Number: NCT01047410
High Serum PCSK9 Is Associated With Increased Risk of New-Onset Diabetes After Transplantation in Renal Transplant Recipients
OBJECTIVE: New-onset diabetes after transplantation (NODAT) is a major complication in renal transplant recipients (RTRs). Cholesterol metabolism has been linked to diabetes development. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is crucial in LDL receptor regulation. Its association with NODAT is unknown. We prospectively determined the association between serum PCSK9 levels and NODAT development and then with all-cause mortality, cardiovascular mortality, and renal graft failure. RESEARCH DESIGN AND METHODS: In a university setting, nondiabetic RTRs recruited between 2001 and 2003 with a functional graft for ≥1 year were eligible. Serum PCSK9 was measured by ELISA. Cox proportional hazards analysis was used to assess the association of PCSK9 with the development of NODAT, all-cause mortality, cardiovascular mortality, and graft failure. RESULTS: In 453 RTRs (age 51 ± 12 years, 56% male; 6.1 [2.7-11.7] years after transplantation), serum PCSK9 was 107.1 ± 43.4 μg/L. During a median follow-up of 10 years, 70 RTRs developed NODAT, 123 died, and 59 developed graft failure. NODAT occurred more frequently in the upper PCSK9 tertile (23%) versus the lowest two PCSK9 tertiles (12%; P < 0.001). In crude Cox regression analyses, PCSK9 was significantly associated with development of NODAT (hazard ratio 1.34 [95% CI 1.10-1.63]) per SD change (P = 0.004). This association remained independent of adjustment for potential confounders, including statin use. PCSK9 was not associated with all-cause mortality, cardiovascular mortality, or graft failure. CONCLUSIONS: Circulating PCSK9 is associated with NODAT in RTRs. The PCSK9 pathway may contribute to the pathogenesis of NODAT
Fear of movement is strongly related to low self-efficacy in RTR.
<p>Fear of movement is strongly related to low self-efficacy in RTR.</p
Democracy and development in Latin America
<p>Background Long-term survival of renal transplant recipients (RTR) has not improved over the past 20yr. The question rises to what extent lifestyle factors play a role in post-transplant weight gain and its associated risks after transplantation.</p><p>Methods Twenty-six RTR were measured for body weight, body composition, blood lipids, renal function, dietary intake, and physical activity at six wk, and three, six, and 12months after transplantation.</p><p>Results Weight gain ranged between -2.4kg and 19.5kg and was largely due to increase in body fat. RTR who remained body fat stable, showed more daily physical activity (p=0.014), tended to consume less energy from drinks and dairy (p=0.054), consumed less mono- and disaccharides (sugars) (p=0.021) and ate more vegetables (p=0.043) compared with those who gained body fat. Gain in body fat was strongly related to total cholesterol (r=0.46, p=0.017) and triglyceride (r=0.511, p=0.011) at one yr after transplantation.</p><p>Conclusions Gain in adiposity after renal transplantation is related to lifestyle factors such as high consumption of energy-rich drinks, high intake of mono- and disaccharides and low daily physical activity. RCTs are needed to investigate potential benefits of lifestyle intervention on long-term morbidity and mortality.</p>