5,588 research outputs found

    Boundary Value Problems for the 2nd2^{nd}-order Seiberg-Witten Equations

    Full text link
    It is shown that the non-homogeneous Dirichlet and Neuman problems for the 2nd2^{nd}-order Seiberg-Witten equation admit a regular solution once the H\mathcal{H}-condition (described in the article) is satisfied. The approach consist in applying the elliptic techniques to the variational setting of the Seiberg-Witten equation.Comment: 19 page

    Critical vortex line length near a zigzag of pinning centers

    Full text link
    A vortex line passes through as many pinning centers as possible on its way from one extremety of the superconductor to the other at the expense of increasing its self-energy. In the framework of the Ginzburg-Landau theory we study the relative growth in length, with respect to the straight line, of a vortex near a zigzag of defects. The defects are insulating pinning spheres that form a three-dimensional cubic array embedded in the superconductor. We determine the depinning transition beyond which the vortex line no longer follows the critical zigzag path of defects.Comment: 8 pages, 25 figures with low resolution option, 1 table. To be published in Eur. Phys. Jour.

    Effects of boundaries in mesoscopic superconductors

    Full text link
    A thin superconducting disk, with radius R=4ξR=4\xi and height H=ξH=\xi, is studied in the presence of an applied magnetic field parallel to its major axis. We study how the boundaries influence the decay of the order parameter near the edges for three-dimensional vortex states.Comment: To appear in Physica C as a special issue of M2S-HTS

    Chebyshev, Legendre, Hermite and other orthonormal polynomials in D-dimensions

    Full text link
    We propose a general method to construct symmetric tensor polynomials in the D-dimensional Euclidean space which are orthonormal under a general weight. The D-dimensional Hermite polynomials are a particular case of the present ones for the case of a gaussian weight. Hence we obtain generalizations of the Legendre and of the Chebyshev polynomials in D dimensions that reduce to the respective well-known orthonormal polynomials in D=1 dimensions. We also obtain new D-dimensional polynomials orthonormal under other weights, such as the Fermi-Dirac, Bose-Einstein, Graphene equilibrium distribution functions and the Yukawa potential. We calculate the series expansion of an arbitrary function in terms of the new polynomials up to the fourth order and define orthonormal multipoles. The explicit orthonormalization of the polynomials up to the fifth order (N from 0 to 4) reveals an increasing number of orthonormalization equations that matches exactly the number of polynomial coefficients indication the correctness of the present procedure.Comment: 20 page

    Effect of the boundary condition on the vortex patterns in mesoscopic three-dimensional superconductors - disk and sphere

    Full text link
    The vortex state of mesoscopic three-dimensional superconductors is determined using a minimization procedure of the Ginzburg-Landau free energy. We obtain the vortex pattern for a mesoscopic superconducting sphere and find that vortex lines are naturally bent and are closest to each other at the equatorial plane. For a superconducting disk with finite height, and under an applied magnetic field perpendicular to its major surface, we find that our method gives results consistent with previous calculations. The matching fields, the magnetization and Hc3H_{c3}, are obtained for models that differ according to their boundary properties. A change of the Ginzburg-Landau parameters near the surface can substantially enhance Hc3H_{c3} as shown here.Comment: 7 pages, 4 figures (low resolution

    Energy dependence of a vortex line length near a zigzag of pinning centers

    Full text link
    A vortex line, shaped by a zigzag of pinning centers, is described here through a three-dimensional unit cell containing two pinning centers positioned symmetrically with respect to its center. The unit cell is a cube of side L=12ξL=12\xi, the pinning centers are insulating spheres of radius RR, taken within the range 0.2ξ0.2\xi to 3.0ξ3.0\xi, ξ\xi being the coherence length. We calculate the free energy density of these systems in the framework of the Ginzburg-Landau theory.Comment: Submitted to Braz. Jour. Phys. (http://www.sbfisica.org.br/bjp) 11 pages, 6 figures, 1 table, LaTex 2

    On Exact and Approximate Solutions for Hard Problems: An Alternative Look

    Get PDF
    We discuss in an informal, general audience style the da Costa-Doria conjecture about the independence of the P = NP hypothesis and try to briefly assess its impact on practical situations in economics. The paper concludes with a discussion of the Coppe-Cosenza procedure, which is an approximate, partly heuristic algorithm for allocation problems.P vs. NP , allocation problem, assignment problem, traveling salesman, exact solution for NP problems, approximate solutions for NP problems, undecidability, incompleteness

    Three-dimensional Ginzburg-Landau simulation of a vortex line displaced by a zigzag of pinning spheres

    Full text link
    A vortex line is shaped by a zigzag of pinning centers and we study here how far the stretched vortex line is able to follow this path. The pinning center is described by an insulating sphere of coherence length size such that in its surface the de Gennes boundary condition applies. We calculate the free energy density of this system in the framework of the Ginzburg-Landau theory and study the critical displacement beyond which the vortex line is detached from the pinning center.Comment: Submitted to special issue of Prammna-Journal of Physics devoted to the Vortex State Studie

    Paramagnetic excited vortex states in superconductors

    Full text link
    We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross section geometry can be read off from the Schwarz - Christoffel mapping. The method is based on the first order equations used by A. Abrikosov to discover vortices.Comment: 14 pages, 7 figure
    corecore