76 research outputs found

    Nuclear fusion and renewable energy forms: Are they compatible?

    No full text
    Nuclear fusion can be considered as a base-load power plant technology: High investment costs and limited operational flexibility require continuous operation. Wind and solar, on the other hand, as the putative main pillars of a future renewable energy system, are intermittent power sources. The resulting variations that occur on many different time scales require at first sight a rather flexible back-up system to balance this stochastic behavior. Fusion would appear not to be well suited for this task. The situation changes, however, if a large-scale renewable energy system is envisaged based on a transnational, or even transcontinental power grid. The present paper discusses a possible European power system in the year 2050 and beyond. A high percentage share of renewable energies and a strong power grid spanning the whole of Europe and involving neighboring countries, in particular those in North Africa, are assumed. The linear programming model URBS is used to describe the power system. The model optimizes the overall system costs and simulates power plant operation with an hourly resolution for one whole year. The geographical resolution is at least at the country level. The renewable technologies are modeled first on a more local level and then summed together at the country or regional level. The results indicate that the smoothing effects of the large-scale power grid transform the intermittent renewable supply, which is then more compatible with base-load power plants such as fusion reactors

    On-line laser mass spectrometry for analysis of combustion processes

    No full text
    On-line laser mass spectrometry for analysis of combustion processes : PCDD/F surrogates in waste incineration flue gases / R. Zimmermann ... - In: Organohalogen compounds. 54. 2001. S. 368-37

    A capillary-based supersonic jet inlet system for resonance-enhanced laser ionization mass spectrometry : Principle and First on-line process analytical applications.

    No full text
    A new supersonic jet inlet system for resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (REMPI-TOFMS), based on a fused-silica capillary with an integral nozzle has been developed. The new jet inlet system generates a supersonic molecular beam that originates in the center of the ion source of the time-of-flight mass spectrometer. Because of the design of the inlet system, high spatial overlap of sample and laser beam (i.e., increased detection sensitivity) and excellent let beam qualities are achieved with good adiabatic cooling properties of analyte molecules (i.e., considerably enhanced optical selectivity of the REMPI process). Furthermore, the inlet is very robust and chemically inert and contains no moving parts. As a result of these properties, the new inlet is perfectly suited for field applications of jet-REMPI. A first field application of a mobile supersonic jet-REMPI mass spectrometer equipped with the novel inlet technique is reported; namely, the concentration of monochlorobenzene, which is an indicator for the formation and emission of toxic polychlorinated dibenzo-p-dioxins/furans, PCDD/F) was measured on-line in the flue gas of a waste incineration plant

    Trennungen

    No full text
    • …
    corecore