2,246 research outputs found

    Courant-Dorfman algebras and their cohomology

    Get PDF
    We introduce a new type of algebra, the Courant-Dorfman algebra. These are to Courant algebroids what Lie-Rinehart algebras are to Lie algebroids, or Poisson algebras to Poisson manifolds. We work with arbitrary rings and modules, without any regularity, finiteness or non-degeneracy assumptions. To each Courant-Dorfman algebra (\R,\E) we associate a differential graded algebra \C(\E,\R) in a functorial way by means of explicit formulas. We describe two canonical filtrations on \C(\E,\R), and derive an analogue of the Cartan relations for derivations of \C(\E,\R); we classify central extensions of \E in terms of H^2(\E,\R) and study the canonical cocycle \Theta\in\C^3(\E,\R) whose class [Θ][\Theta] obstructs re-scalings of the Courant-Dorfman structure. In the nondegenerate case, we also explicitly describe the Poisson bracket on \C(\E,\R); for Courant-Dorfman algebras associated to Courant algebroids over finite-dimensional smooth manifolds, we prove that the Poisson dg algebra \C(\E,\R) is isomorphic to the one constructed in \cite{Roy4-GrSymp} using graded manifolds.Comment: Corrected formulas for the brackets in Examples 2.27, 2.28 and 2.29. The corrections do not affect the exposition in any wa

    Pulse radiolysis studies of fast reactions in molecular systems. Progress report, November 1974--October 1975

    Full text link
    Work on the reactivity of aryl carbonium ions in solution and single heme reduction in human methemoglobin is summarized. (LK

    THE INTERACTION OF TRITIUM WITH POLYMERIC MATERIALS

    Full text link

    Information-theoretic equilibration: the appearance of irreversibility under complex quantum dynamics

    Full text link
    The question of how irreversibility can emerge as a generic phenomena when the underlying mechanical theory is reversible has been a long-standing fundamental problem for both classical and quantum mechanics. We describe a mechanism for the appearance of irreversibility that applies to coherent, isolated systems in a pure quantum state. This equilibration mechanism requires only an assumption of sufficiently complex internal dynamics and natural information-theoretic constraints arising from the infeasibility of collecting an astronomical amount of measurement data. Remarkably, we are able to prove that irreversibility can be understood as typical without assuming decoherence or restricting to coarse-grained observables, and hence occurs under distinct conditions and time-scales than those implied by the usual decoherence point of view. We illustrate the effect numerically in several model systems and prove that the effect is typical under the standard random-matrix conjecture for complex quantum systems.Comment: 15 pages, 7 figures. Discussion has been clarified and additional numerical evidence for information theoretic equilibration is provided for a variant of the Heisenberg model as well as one and two-dimensional random local Hamiltonian

    Power-law tail distributions and nonergodicity

    Full text link
    We establish an explicit correspondence between ergodicity breaking in a system described by power-law tail distributions and the divergence of the moments of these distributions.Comment: 4 pages, 1 figure, corrected typo

    Macroscopic detection of the strong stochasticity threshold in Fermi-Pasta-Ulam chains of oscillators

    Full text link
    The largest Lyapunov exponent of a system composed by a heavy impurity embedded in a chain of anharmonic nearest-neighbor Fermi-Pasta-Ulam oscillators is numerically computed for various values of the impurity mass MM. A crossover between weak and strong chaos is obtained at the same value ϵT\epsilon_{_T} of the energy density ϵ\epsilon (energy per degree of freedom) for all the considered values of the impurity mass MM. The threshold \epsi lon_{_T} coincides with the value of the energy density ϵ\epsilon at which a change of scaling of the relaxation time of the momentum autocorrelation function of the impurity ocurrs and that was obtained in a previous work ~[M. Romero-Bastida and E. Braun, Phys. Rev. E {\bf65}, 036228 (2002)]. The complete Lyapunov spectrum does not depend significantly on the impurity mass MM. These results suggest that the impurity does not contribute significantly to the dynamical instability (chaos) of the chain and can be considered as a probe for the dynamics of the system to which the impurity is coupled. Finally, it is shown that the Kolmogorov-Sinai entropy of the chain has a crossover from weak to strong chaos at the same value of the energy density that the crossover value ϵT\epsilon_{_T} of largest Lyapunov exponent. Implications of this result are discussed.Comment: 6 pages, 5 figures, revtex4 styl

    Velocity Tails for Inelastic Maxwell Models

    Full text link
    We study the velocity distribution function for inelastic Maxwell models, characterized by a Boltzmann equation with constant collision rate, independent of the energy of the colliding particles. By means of a nonlinear analysis of the Boltzmann equation, we find that the velocity distribution function decays algebraically for large velocities, with exponents that are analytically calculated.Comment: 4 pages, 2 figure

    Quantum macrostatistical picture of nonequilibrium steady states

    Full text link
    We employ a quantum macrostatistical treatment of irreversible processes to prove that, in nonequilibrium steady states, (a) the hydrodynamical observables execute a generalised Onsager-Machlup process and (b) the spatial correlations of these observables are generically of long range. The key assumptions behind these results are a nonequilibrium version of Onsager's regression hypothesis, together with certain hypotheses of chaoticity and local equilibrium for hydrodynamical fluctuations.Comment: TeX, 13 page

    Hierarchy of piecewise non-linear maps with non-ergodicity behavior

    Full text link
    We study the dynamics of hierarchy of piecewise maps generated by one-parameter families of trigonometric chaotic maps and one-parameter families of elliptic chaotic maps of cn\mathbf{cn} and sn\mathbf{sn} types, in detail. We calculate the Lyapunov exponent and Kolmogorov-Sinai entropy of the these maps with respect to control parameter. Non-ergodicity of these piecewise maps is proven analytically and investigated numerically . The invariant measure of these maps which are not equal to one or zero, appears to be characteristic of non-ergodicity behavior. A quantity of interest is the Kolmogorov-Sinai entropy, where for these maps are smaller than the sum of positive Lyapunov exponents and it confirms the non-ergodicity of the maps.Comment: 18 pages, 8 figure

    Generalized Haldane Equation and Fluctuation Theorem in the Steady State Cycle Kinetics of Single Enzymes

    Full text link
    Enyzme kinetics are cyclic. We study a Markov renewal process model of single-enzyme turnover in nonequilibrium steady-state (NESS) with sustained concentrations for substrates and products. We show that the forward and backward cycle times have idential non-exponential distributions: \QQ_+(t)=\QQ_-(t). This equation generalizes the Haldane relation in reversible enzyme kinetics. In terms of the probabilities for the forward (p+p_+) and backward (pp_-) cycles, kBTln(p+/p)k_BT\ln(p_+/p_-) is shown to be the chemical driving force of the NESS, Δμ\Delta\mu. More interestingly, the moment generating function of the stochastic number of substrate cycle ν(t)\nu(t), follows the fluctuation theorem in the form of Kurchan-Lebowitz-Spohn-type symmetry. When $\lambda$ = $\Delta\mu/k_BT$, we obtain the Jarzynski-Hatano-Sasa-type equality: \equiv 1 for all tt, where νΔμ\nu\Delta\mu is the fluctuating chemical work done for sustaining the NESS. This theory suggests possible methods to experimentally determine the nonequilibrium driving force {\it in situ} from turnover data via single-molecule enzymology.Comment: 4 pages, 3 figure
    corecore