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Abstract. We introduce a new type of algebra, the Courant–Dorfman algebra. These are
to Courant algebroids what Lie–Rinehart algebras are to Lie algebroids, or Poisson alge-
bras to Poisson manifolds. We work with arbitrary rings and modules, without any regu-
larity, finiteness or non-degeneracy assumptions. To each Courant–Dorfman algebra (R,E)
we associate a differential graded algebra C(E,R) in a functorial way by means of explicit
formulas. We describe two canonical filtrations on C(E,R), and derive an analogue of
the Cartan relations for derivations of C(E,R); we classify central extensions of E in
terms of H2(E,R) and study the canonical cocycle �∈C3(E,R) whose class [�] obstructs
re-scalings of the Courant–Dorfman structure. In the nondegenerate case, we also explic-
itly describe the Poisson bracket on C(E,R); for Courant–Dorfman algebras associated to
Courant algebroids over finite-dimensional smooth manifolds, we prove that the Poisson dg
algebra C(E,R) is isomorphic to the one constructed in Roytenberg (On the structure of
graded symplectic supermanifolds and Courant algebroids. American Mathematical Society,
Providence, 2002) using graded manifolds.
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1. Introduction

1.1. HISTORICAL BACKGROUND

This is the first in a series of papers devoted to the study of Courant–Dorfman
algebras. These algebraic structures first arose in the work of Irene Dorfman [8]
and Ted Courant [4] on reduction in classical mechanics and field theory (with [5]
a precursor to both, ultimately leading back to [7]). Courant considered sections
of the vector bundle TM = T M ⊕ T ∗M over a finite-dimensional C∞ manifold M ,
endowed with the canonical pseudo-metric

〈(v1, α1), (v2, α2)〉= ιv1α2 + ιv2α1

To the memory of I.Ya. Dorfman (1948–1994).
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and a new bracket he introduced:

[[(v1, α1), (v2, α2)]]=
(

{v1, v2}, Lv1α2 − Lv2α1 − 1
2

d0(ιv1α2 − ιv2α1)

)
,

while Dorfman was working in a more general abstract setting involving a Lie
algebra X1 and a complex � acted upon by the differential graded Lie algebra
T [1]X1 =X1[1]⊕X1 (i.e., to each v ∈X1 there are associated operators ιv and Lv
on � satisfying the usual Cartan relations). She considered the space Q=X1 ⊕�1

equipped with the above pseudo-metric and a bracket given by

[(v1, α1), (v2, α2)]= ({v1, v2}, Lv1α2 − ιv2 d0α1)

Here {·, ·} denotes the commutator of vector fields (resp. the bracket on X1), while
d0 denotes the exterior derivative (resp. the differential on �). In both cases, a
Dirac structure was defined to be a subbundle D ⊂ TM (resp. a subspace D ⊂ Q)
which is maximally isotropic with respect to 〈·, ·〉 and closed under the Courant
(resp. Dorfman) bracket; each Dirac structure defines a Poisson bracket on a sub-
algebra of C∞(M) (resp. a subspace of �0), thus explaining the role of this formal-
ism in the theory of constrained dynamical systems, both in mechanics and field
theory. We refer to [9] for an excellent exposition of these ideas.

The notion of a Courant algebroid was introduced in [14] where it was used to
generalize the theory of Manin triples to Lie bialgebroids; it involved a vector bun-
dle equipped with a pseudo-metric, a Courant bracket and an anchor map to the
tangent bundle, satisfying a set of compatibility conditions. The notion has since
turned up in other contexts. Ševera [22] discovered that a Courant (or Dorfman)
bracket could be twisted by a closed 3-form, as a result of which the Courant
algebroid TM took the place of T M in Hitchin’s “generalized differential geom-
etry” (i.e. differential geometry in the presence of an abelian gerbe [11]); he also
noted that transitive Courant algebroids could be used to give an obstruction-the-
oretic interpretation of the first Pontryagin class (this theory was fully worked out
by Bressler [3], who also elucidated the relation with vertex operator algebras). In
general, there is mounting evidence that Courant algebroids play the same rôle in
string theory as Poisson structures do in particle mechanics [1,3,22].

1.2. THE AIM AND CONTENT OF THIS PAPER

In our earlier work [18,19] we made an attempt to explain Courant algebroids in
terms of graded differential geometry by constructing, for each vector bundle E
with a non-degenerate pseudo-metric, a graded symplectic (super)manifold M(E).
We proved that Courant algebroid structures on E correspond to functions � ∈
C3(M(E)) obeying the Maurer–Cartan equation

{�,�}=0
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The advantage of this approach is geometric clarity: after all, graded manifolds are
just manifolds with a few bells and whistles, and our construction uses nothing
more than a cotangent bundle. As a by-product, it yielded new examples of topo-
logical sigma-models [20]. Moreover, the graded manifold approach enabled Ševera
[23] to envision an infinite hierarchy of graded symplectic structures similar to the
hierarchy of higher categories (our construction in [19] is equivalent to a special
case of his).

Nevertheless, the formulation in terms of graded manifolds has certain draw-
backs. In particular, we were unable to describe the algebra of functions C(M(E))
explicitly in terms of E , which made it somewhat difficult to work with: general
considerations (such as grading) would carry one a certain distance, but to go
beyond that, one had to either resort to local coordinates, or introduce unnatural
extra structure, such as a connection, which rather spoiled the otherwise beautiful
picture.

The aim of this paper is to obtain a completely explicit description of the alge-
bra C(M(E)). We work from the outset with a commutative algebra R and an
R-module E equipped with a pseudo-metric 〈·, ·〉; these can be completely arbi-
trary: no regularity or finiteness conditions are imposed on R or E , nor is 〈·, ·〉
required to be non-degenerate1. A Courant–Dorfman algebra consists of this under-
lying structure, plus an E-valued derivation ∂ of R and a (Dorfman) bracket [·, ·],
satisfying compatibility conditions generalizing those defining a Courant algebroid.

Given a metric R-module (E, 〈·, ·〉), we construct a graded commutative
R-algebra C(E,R) whose degree-q component consists of (finite) sequences ω=
(ω0,ω1, . . .), where each ωk is an R-valued function of q − 2k arguments from E
and k arguments from R. With respect to the R-arguments, ωk is a symmetric
k-derivation; the behavior of ωk under permutations of the E-arguments and the
multiplication of these arguments by elements of R is controlled by ωk+1. The
algebra C(E,R) is actually a subalgebra of the convolution algebra Hom(U (L),R)
where L is a certain graded Lie algebra.

Furthermore, every Courant–Dorfman structure on the metric module E gives
rise to a differential on the algebra C(E,R) for which we give an explicit for-
mula (4.1). The construction is functorial with respect to (strict) morphisms of
Courant–Dorfman algebras; this is the content of our first main Theorem 4.10
The resulting cochain complex, which we call the standard complex, is related
to the Loday–Pirashvili complex [15] for the Leibniz algebra (E, [·, ·]) in a way
analogous to how the de Rham complex of a manifold is related to the Chevalley–
Eilenberg complex of its Lie algebra of vector fields.

We then conduct further investigation of the differential graded algebra C(E,R).
In particular, we describe natural filtrations and subcomplexes, related to those
considered in [10] and [24], which we expect to be an important tool in

1This is still more than Dorfman [8] required: what she was dealing with is an example of a
structure we called hemi-strict Lie 2-algebra in [21].
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cohomology computations; derive commutation relations among certain deriva-
tions of C(E,R), similar to the well-known Cartan relations among contractions
and Lie derivatives by vector fields; classify central extensions of the Courant–
Dorfman algebra E in terms of H2(E,R). We also consider the canonical cocycle
�= (�0,�1)∈C3(E,R) given by the formula:

�0(e1, e2, e3)=〈[e1, e2], e3〉
�1(e; f )=−ρ(e) f

generalizing the Cartan 3-form on a quadratic Lie algebra appearing in the Chern–
Simons theory.

When the pseudo-metric 〈·, ·〉 is non-degenerate, the algebra C(E,R) has a
Poisson bracket for which we also give an explicit formula [(6.1), (6.2) and (6.3)];
the differential is then Hamiltonian: d =−{�, ·} (Theorem 6.3). Finally, for Cou-
rant–Dorfman algebras coming from finite-dimensional vector bundles, we prove
(Theorem 6.7) that the differential graded Poisson algebra C(E,R) is isomorphic
to the algebra C(M(E)) constructed in [19]. The isomorphism associates to every
ω∈C p(M(E)) the sequence �ω= ((�ω)0, (�ω1), . . .)∈C p(E,R) where

(�ω)k(e1, . . . , ep−2k; f1, . . . , fk)=
= (−1)

(p−2k)(p−2k−1)
2 {· · · {ω, e�1}, · · · }, e�p−2k}, f1}, · · · }, fk}

where e�=〈e, ·〉. Under this isomorphism, our canonical cocycle � corresponds to
the one constructed in loc. cit. In fact, this formula is the main creative input for
this work: all the other formulas were “reverse-engineered” from this one and then
shown to be valid in the general case. This construction should be compared to
Voronov’s “higher derived brackets” [25].

We would like to emphasize that, apart from overcoming the drawbacks of the
graded manifold formulation mentioned above and being completely explicit, our
constructions apply in a much more general setting where extra structures, such as
local coordinates or connections, may not be available. One point worth mention-
ing is that the algebra C(E,R) is generally not freely generated over R (in a sense
which we hope to eventually make precise, it is as free as possible in the presence
of 〈·, ·〉); rather, it has a filtration such that the associated graded algebra is free
graded commutative over R. The situation is the following: when R and E sat-
isfy some finiteness conditions and 〈·, ·〉 is non-degenerate, the set of isomorphisms
of C(E,R) with the free algebra grC(E,R)= SR(X1[−2]⊕E∨[−1]) is in 1-1 corre-
spondence with the set of splittings of the extension of R-modules

	2
RE∨ �C2(E,R)�Der(R,R)=:X1

This is known as an Atiyah sequence; its splitting is nothing but a metric con-
nection on E . The set of splittings may be empty, but when R is “smooth” (in
the sense that the module Der(R,R) is projective), splittings do exist and form
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a torsor under �1 ⊗R	2
RE∨; nevertheless, it is important to keep in mind that,

when working with a smooth scheme or a complex manifold, such splittings gener-
ally exist only locally, while a global splitting is obstructed by the Atiyah class. In
[19] we wrote down the Poisson bracket on SR(X1[−2]⊕E∨[−1]) corresponding to
the canonical one on C(M(E)) under a given metric connection ∇; we have since
been informed that this bracket had been known to physicists under the name of
Rothstein bracket [17]. For an approach using this formulation we refer to [13]; our
work here was motivated by the desire to avoid any unnatural choices.

1.3. THE SEQUEL (s)

We plan to write (at least) two sequels to this paper, in which we address sev-
eral issues not covered here. In the first one, we introduce a closed 2-form 
 on
the algebra C(E,R); it corresponds to the one we constructed on C(M(E)) in [19]
(even for degenerate 〈·, ·〉). We use this extra structure to, on the one hand, restrict
the class of morphisms of differential graded algebras to those which also pre-
serve this structure, and on the other hand, to expand the class of morphisms of
Courant–Dorfman algebras to include lax morphisms, so as to make the functor
from Theorem 4.10 fully faithful. We will also consider morphisms of Courant–
Dorfman algebras over different base rings. Furthermore, the 2-form 
 gives rise
to a Poisson bracket on a certain subalgebra of C(E,R) by a graded version of
Dirac’s formalism [7].

In the second sequel, we consider the general notion of a module over a
Courant–Dorfman algebra, based on the notion of a dg module over the dg alge-
bra C(E,R) (possibly with some extra conditions involving 
), and study the
(derived) category of these modules. One such module is the adjoint module C(E,E)
consisting of derivations of C(E,R) preserving 
. It forms a differential graded Lie
algebra under the commutator bracket; this dg Lie algebra controls the deforma-
tion theory of Courant–Dorfman structures on a fixed underlying metric module,
and is analogous to the dg Lie algebra controlling deformations of Lie–Rinehart
structures on a fixed underlying module, described in [6].

Eventually, we hope to be able to re-write the whole story using an approach
involving nested operads.

1.4. ON RELATION WITH OTHER WORK AND CHOICE OF TERMINOLOGY

Our definition of a Courant–Dorfman algebra is very similar to Weinstein’s
“(R,A)C-algebras” [26], except for his non-degeneracy assumption and use of
Courant, rather than Dorfman, brackets. Keller and Waldmann [13] gave an “alge-
braic” definition of a Courant algebroid, while still retaining the finiteness, regu-
larity and non-degeneracy assumptions, and obtained formulas similar to some of
those derived here. Our description of the algebra C(E,R) has the same spirit as
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the formulas describing exterior powers of adjoint and co-adjoint representations
of a Lie algebroid in ([2], Example 3.26 and Section 4.2).

We feel justified in our choice of the term “Courant–Dorfman algebra”: not
only is it natural and easy to remember, but it also recognizes the contributions
of two mathematicians (one of whom has long since left active research while the
other is, sadly, no longer with us) to the subject that has since grown in scope far
beyond what they had envisioned.

1.5. ORGANIZATION OF THE PAPER

The paper is organized as follows. In Section 2, we define Courant–Dorfman alge-
bras, derive some of their basic properties and give a number of examples of
these structures, emphasizing connection with the various areas of mathematics
where they arise. Section 3 is devoted to the preliminary construction of a con-
volution algebra associated to a graded Lie algebra. Section 4 is the heart of the
paper, where we construct the differential graded algebra C(E,R) and study its
properties. Section 5 is devoted to classifying central extensions and studying the
canonical class of a Courant–Dorfman algebra. In Section 6, we consider the non-
degenerate case and derive formulas for the Poisson bracket; here we also elucidate
the relation of our constructions with earlier work on Courant algebroids. Finally,
Section 7 is devoted to concluding remarks and speculations. For the convenience
of the reader we have also included several appendices where we have collected the
necessary facts about derivations, Kähler differentials, Lie–Rinehart algebras and
Leibniz algebras.

2. Definition and Basic Properties

2.1. CONVENTIONS AND NOTATION

We fix once and for all a commutative ring K, containing 1
2 , as our ground ring

(the condition ensures that K-linear derivations annihilate constants and polariza-
tion identities hold). All tensor products and Hom’s are assumed to be over K;
tensor products and Hom’s over other rings will be explicitly indicated by appro-
priate subscripts.

By a graded module we shall always mean a collection M = {Mi }i∈Z of mod-
ules indexed by Z. The dual module M∨ is defined by setting M∨

i = (M−i )
∨. For

a k ∈Z, the shifted module M[k] is defined by M[k]i =Mk+i , so that (M[k])∨ =
(M∨)[−k].

The (graded) commutator of operators will always be denoted by {·, ·}.

2.2. COURANT–DORFMAN ALGEBRAS AND RELATED CATEGORIES

DEFINITION 2.1. A Courant–Dorfman algebra consists of the following data:
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• a commutative K-algebra R;
• an R-module E ;
• a symmetric bilinear form (pseudometric) 〈·, ·〉 :E ⊗R E −→R;
• a derivation ∂ :R−→E ;
• a Dorfman bracket [·, ·] :E ⊗E −→E .

These data are required to satisfy the following conditions:

(1) [e1, f e2]= f [e1, e2]+ 〈e1,∂ f 〉e2;
(2) 〈e1,∂〈e2, e3〉〉=〈[e1, e2], e3〉+〈e2, [e1, e3]〉;
(3) [e1, e2]+ [e2, e1]=∂〈e1, e2〉;
(4) [e1, [e2, e3]]= [[e1, e2], e3]+ [e2, [e1, e3]];
(5) [∂ f, e]=0;
(6) 〈∂ f,∂g〉=0

for all e, e1, e2, e3 ∈E , f, g ∈R.
When only conditions (1), (2) and (3) are satisfied, we shall speak of an almost

Courant–Dorfman algebra and treat (4), (5) and (6) as integrability conditions.

Remark 2.2. A K-module E equipped with a bracket [·, ·] satisfying condition (4)
above is called a (K-) Leibniz algebra. For basic facts about these algebras we refer
to Appendix C.

Given a Courant–Dorfman algebra, the Courant bracket [[·, ·]] is defined by the
formula

[[e1, e2]]= 1
2
([e1, e2]− [e2, e1])

Conversely, the Dorfman bracket can be recovered from the Courant bracket:

[e1, e2]= [[e1, e2]]+ 1
2
∂〈e1, e2〉

If 1
3 ∈K, the definition of a Courant–Dorfman algebra can be rewritten in terms

of the Courant bracket, as was done originally in [14].

DEFINITION 2.3. The bilinear form 〈·, ·〉 gives rise to a map

(·)� :E −→E∨ =HomR(E,R)

defined by

e�(e′)=〈e, e′〉
We say 〈·, ·〉 is strongly non-degenerate if (·)� is an isomorphism, and call a
Courant–Dorfman algebra non-degenerate if its bilinear form is strongly non-
degenerate. In this case the inverse map is denoted by

(·)� :E∨ −→E
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and there is a symmetric bilinear form

{·, ·} :E∨ ⊗R E∨ −→R

defined by

{λ,µ}=〈λ�,µ�〉 (2.1)

for λ,µ∈E∨.

Remark 2.4. For non-degenerate Courant–Dorfman algebras, it can be shown that
conditions (1), (5) and (6) of Definition 2.1 are redundant.

DEFINITION 2.5. A strict morphism between Courant–Dorfman algebras E and
E ′ is a map of R-modules f :E →E ′ respecting all the operations.

Remark 2.6. It is possible to define a morphism of Courant–Dorfman algebras
over different base rings, as well as weak morphisms which preserve the operations
up to coherent homotopies. For the purposes of this paper, strict morphisms over
a fixed base suffice; we shall refer to them simply as morphisms from now on.

Courant–Dorfman algebras over a fixed R form a category, which we denote by
CDR.

Remark 2.7. The Courant–Dorfman structure consists of several layers of under-
lying structure: the R-module E , the metric R-module (E, 〈·, ·〉), the differential
metric R-module (E, 〈·, ·〉,∂) and the K-Leibniz algebra (E, [·, ·]). Correspondingly,
there are obvious forgetful functors from CDR to the categories ModR, MetR,
dMetR and LeibK. We shall refer to the respective fiber categories CDE , CD(E,〈·,·〉)
and CD(E,〈·,·〉,∂) when we wish to consider Courant–Dorfman algebra with the
indicated underlying structure fixed. We shall frequently speak of just a Courant
bracket or a Dorfman bracket, with the rest of the data implicitly understood.

DEFINITION 2.8. Given a locally ringed space (X,OX ) over K, a Courant alge-
broid over X is an OX -module E equipped with a compatible Courant–Dorfman
algebra structure.

Remark 2.9. Definition 2.8 differs somewhat from the earlier versions. Tradition-
ally [14], X was required to be a C∞ manifold, E locally free of finite rank (i.e.
sections of a vector bundle), and 〈·, ·〉 strongly non-degenerate; Bressler [3] drops
the finite-rank and non-degeneracy assumptions while still requiring that X be a
smooth manifold. Our definition is equivalent to those of loc. cit. under the afore-
mentioned additional assumptions.
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2.3. THE ANCHOR, COANCHOR AND TANGENT COMPLEX

Let �1 =�1
R be the R-module of Kähler differentials, with the universal deriva-

tion

d0 :R−→�1.

Furthermore, let

X1 =X1
R =Der(R,R)HomR(�1,R)

Now, let (R,E) be a Courant–Dorfman algebra. By the universal property of �1,
there is a unique map of R-modules

δ :�1 −→E

such that δ(d0 f )=∂ f (see Appendix A). This map will be referred to as the coan-
chor. Define further the anchor map

ρ :E −→X1

by setting

ρ(e) · f =〈e,∂ f 〉 (2.2)

for all e ∈E , f ∈R.

Remark 2.10. In a non-degenerate almost Courant–Dorfman algebra, ∂ can be
recovered from ρ, and condition (1) of Definition 2.1 follows from (2) and (3).

The condition (6) of Definition 2.1 can now be restated as

ρ ◦ δ=0 (2.3)

In other words, the following is a cochain complex of R-modules:

�1[2] δ−→E[1] ρ−→X1 (2.4)

This complex will be denoted by T=TE and referred to as the tangent complex of
the Courant–Dorfman algebra E ; the differential on T will also be denoted by δ
(that is, δ−2 = δ, δ−1 =ρ).

DEFINITION 2.11. A Courant–Dorfman algebra is exact if its tangent complex
is acyclic.

The complex T has an extra structure: namely, the symmetric bilinear form 〈·, ·〉
on E extends to a graded skew-symmetric bilinear map of graded R-modules


 :T⊗R T−→R[2]
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if we define


(v,α)= ιvα=−
(α, v)
(2.5)


(e1, e2)=〈e1, e2〉
for v∈X1, α∈�1, e1, e2 ∈E .

PROPOSITION 2.12. 
 is δ-invariant, i.e.


(δa,b)+ (−1)deg(a)
(a, δb)=0 (2.6)

for all homogeneous a,b ∈T.

Proof. This amounts to saying that, for all e ∈E and α∈�1, one has

〈e, δα〉= ιρ(e)α, (2.7)

which is just a restatement of the definitions.

PROPOSITION 2.13. The anchor ρ is a homomorphism of Leibniz algebras.

Proof. First, observe that conditions (3) and (5) of Definition 2.1 imply

[e,∂ f ]=∂〈e,∂ f 〉 (2.8)

Furthermore, by (2),

〈e1,∂〈∂ f, e2〉〉=〈[e1,∂ f ], e2〉+〈∂ f, [e1, e2]〉
Combining these and using the definition of ρ, we immediately get

ρ([e1, e2]) · f =ρ(e1) · (ρ(e2) · f )−ρ(e2) · (ρ(e1) · f ),

as claimed.

COROLLARY 2.14. Let (R,E) be a Courant–Dorfman algebra, and let K= ker ρ.
Then (R,K) is a Courant–Dorfman subalgebra (with zero anchor).

Proof. By Proposition 2.13, K is closed under [·, ·]; by (2.3), the image of ∂ is
contained in K.

PROPOSITION 2.15. The image δ�1 is a two-sided ideal with respect to the
Dorfman bracket [·, ·]. More precisely, the following identities hold:

[e, δα]= δLρ(e)α

[δα, e]= δ(−ιρ(e)d0α)

In particular,

[δα, δβ]=0

for all α,β ∈�1, e ∈E .
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Proof. For the first identity, it suffices to consider α of the form f d0g. The iden-
tity then follows by applying condition (1) and the formula (2.8). The second iden-
tity then follows immediately from condition (3) and the Cartan identity. The last
identity is then a consequence of (2.3).

COROLLARY 2.16. Let Ē = E/δ�1. Then (R, Ē) is a Lie–Rinehart algebra under
the induced bracket and anchor; furthermore, the pseudometric 〈·, ·〉 induces one on
K̄=ker ρ̄ which is, moreover, Ē-invariant (with respect to the natural action of Ē on
K̄, see Appendix B).

Proof. By Proposition 2.15, the bracket on E descends to Ē ; the induced bracket
is skew-symmetric by condition (3). Similarly, by (2.3), one gets the induced anchor
ρ̄ : Ē −→X1. The axioms for a Lie–Rinehart algebra follow immediately from those
for Courant–Dorfman algebra.

To prove the last statement, observe that K̄=K/δ�1. Now, for all e ∈K, α∈�1,

〈e, δα〉= ιρ(e)α=0 (2.9)

by (2.7), hence 〈·, ·〉 descends to K̄. The Ē-invariance follows from axiom (2). The
equation (2.9) implies, in particular, that δ�1 is isotropic.

Remark 2.17. Of course, E/∂R is always a Lie algebra (over K).

DEFINITION 2.18. Suppose E is a Courant–Dorfman algebra. An R-submodule
D⊂E is said to be a Dirac submodule if D is isotropic with respect to 〈·, ·〉 and is
closed under [·, ·] (equivalently, under [[·, ·]]).
PROPOSITION 2.19. If D is a Dirac submodule, (R,D) is a Lie–Rinehart algebra
under the restriction of the anchor and bracket.

Proof. Clear.

Even though 〈·, ·〉 is allowed to be degenerate, even zero, it is not true that a
Lie–Rinehart algebra is a special case of a Courant–Dorfman algebra, because
of the relation (2.2) between the anchor and 〈·, ·〉. Nevertheless, the notion of a
morphism between a Courant–Dorfman algebra and a Lie–Rinehart algebra does
make sense.

DEFINITION 2.20. A strict morphism from a Lie–Rinehart algebra L to a
Courant–Dorfman algebra E is a map of R-modules p :L−→E satisfying the fol-
lowing conditions:

(1) p commutes with anchors and brackets;
(2) 〈·, ·〉 ◦ (p ⊗ p)=0

DEFINITION 2.21. A strict morphism from a Courant–Dorfman algebra E to a
Lie–Rinehart algebra L is an R-module map r : E −→ L satisfying the following
conditions:
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(1) r commutes with anchors and brackets;
(2) r ◦ δ=0

PROPOSITION 2.22. The following are morphisms in the sense of the above defini-
tions:

• the anchor ρ :E −→X1;
• the canonical projection π :E −→ Ē from Corollary 2.16;
• the inclusion i :D −→E of a Dirac submodule.

Proof. Obvious, in view of the already established facts.

2.4. TWISTS

Given a Courant–Dorfman algebra E and a 3-form ψ ∈�3, we can define a new
bracket

[e1, e2]ψ =[e1, e2]+ διρ(e2)ιρ(e1)ψ (2.10)

This twisted bracket [·, ·]ψ will be again a Dorfman bracket (with the same 〈·, ·〉
and ∂) if and only if d0ψ=0. It is clear that this defines an invertible endofunctor
Tw(ψ) on the category CDR, restricting to each CD(E,〈·,·〉,∂), and that

Tw(ψ1 +ψ2)=Tw(ψ1)◦Tw(ψ2)

Furthermore, each β ∈�2 defines a natural transformation exp(−β) from Tw(ψ)
to Tw(ψ+d0β) via

exp(−β)(e)= e − διρ(e)β

which is also additive. In fact, this yields an action of the group crossed mod-

ule �2 d0−→�3,cl on the category CDR, restricting to each CD(E,〈·,·〉,∂). In particu-
lar, the group �2,cl of closed 2-forms acts on every Courant–Dorfman algebra by
automorphisms.

We refer to [3] for the relevant calculations.

2.5. SOME EXAMPLES

EXAMPLE 2.23. Let (R,E) be a Courant–Dorfman algebra with 〈·, ·〉 = 0. A
quick glance at the axioms then shows that E is a Lie algebra over R, while ∂ is
a derivation with values in the center of E . There are no further restrictions.

As a special case of this, let E =R. Then the bracket must vanish, while the der-
ivation ∂ can be arbitrary.

More fundamentally, consider E =�1 with ∂ = d0. This is the initial object in
CDR.
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EXAMPLE 2.24. At the opposite extreme, let ∂ = 0. Then the definition reduces
to that of a quadratic Lie algebra over R (i.e. a Lie algebra equipped with an
ad-invariant quadratic form).

EXAMPLE 2.25. Given an R, let Q0 =X1 ⊕�1. It becomes a Courant–Dorfman
algebra with respect to

〈(v1, α1), (v2, α2)〉= ιv1α2 + ιv2α1

∂ f = (0,d0 f )

[(v1, α1), (v2, α2)]= ({v1, v2}, Lv1α2 − ιv2 d0α1)

The bracket here is the original Dorfman bracket [8], while the corresponding
Courant bracket is

[[(v1, α1), (v2, α2)]]=
(

{v1, v2}, Lv1α2 − Lv2α1 − 1
2

d0(ιv1α2 − ιv2α1)

)

which is the original Courant bracket [4].
For any ψ ∈ �3,cl, the Courant–Dorfman algebra Qψ = Tw(ψ)(Q0) is exact.

Conversely, it can be shown [22] that, if Q is exact and its tangent complex TQ
(2.4) admits an isotropic splitting, Q is isomorphic to Qψ for some ψ ; since iso-
tropic splittings form an �2-torsor, such exact Courant–Dorfman algebras are clas-
sified by H3

dR(R).
EXAMPLE 2.26. As a variant of the previous example, we can replace X1 by an
arbitrary Lie–Rinehart algebra (R,L), and let E = L ⊕�1. Given any ψ ∈�3,cl,
define the structure maps as follows:

〈(a1, α1), (a2, α2)〉= ιρ(a1)α2 + ιρ(a2)α1

∂ f = (0,d0 f )

[(a1, α1), (a2, α2)]= ([a1,a2], Lρ(a1)α2 − ιρ(a2)d0α1 + ιρ(a1)ιρ(a2)ψ),

where ρ is the anchor of L.
More generally, we can consider a pair of compatible Lie–Rinehart algebras in

duality (a Lie bialgebroid) [14].

EXAMPLE 2.27. Consider a Lie algebra g over K equipped with an ad-invariant
pseudometric 〈·, ·〉. Given a K-algebra R, let g=R⊗g; extend [·, ·] and 〈·, ·〉 to g

by R-linearity. Finally, let E =g⊕�1 and define the structure maps as follows:

〈(F1, α1), (F2, α2)〉=〈F1, F2〉
∂ f = (0,d0 f )

[(F1, α1), (F2, α2)]= ([F1, F2], 〈F1,d0 F2〉),
where, for Fi = fi ⊗ xi (i = 1,2), 〈F1,d0 F2〉 means 〈x1, x2〉 f1d0 f2. Again, it can
be easily checked that this defines a Courant–Dorfman structure (with zero
anchor map). This algebra goes back to the work of Spencer Bloch on algebraic
K -theory (see [3] and references therein).
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EXAMPLE 2.28. As a special case of the previous example, assume that Q ⊂ K

and consider R = K[z, z−1], the ring of Laurent polynomials. In this case, g is
better known as Lg, the loop Lie algebra of g, and the Lie algebra structure on
E/∂R = Lg ⊕ (�1/d0R) Lg ⊕ K is very well-known. The latter isomorphism is
induced by the residue map

∮
:�1 −→K,

and so the Lie bracket is given by the famous Kac-Moody formula

[F1, F2]+
∮

〈F1,d0 F2〉

EXAMPLE 2.29. It is possible to combine Examples 2.26 and 2.27. Let g be a Lie
algebra over R. Assume there is a connection ∇ on g which acts by derivations of
the Lie bracket. Let ω∈�2 ⊗R g be the curvature. Then L=X1 ⊕g becomes a Lie–
Rinehart algebra with the bracket given by

[(v1, ξ1), (v2, ξ2)]= ([v1, v2], [ξ1, ξ2]+∇v1ξ2 −∇v2ξ1 + ιv1 ιv2ω)

and the anchor given by projection onto the first factor.
Suppose now that g is equipped with an ad-invariant ∇-invariant (i.e. L-invari-

ant) pseudometric 〈·, ·〉 and that, moreover, there exists a 3-form ψ ∈�3 such that

d0ψ= 1
2
〈ω,ω〉

(the condition for the first Pontryagin class to vanish). Then the Lie–Rinehart
structure on L extends to a Courant–Dorfman structure on E =L⊕�1 as follows:

∂ f = (0,0,d0 f )

〈(v1, ξ1, α1), (v2, ξ2, α2)〉= ιv1α2 + ιv2α1 +〈ξ1, ξ2〉
[(v1, ξ1, α1), (v2, ξ2, α2)]= ([v1, v2], [ξ1, ξ2]+∇v1ξ2 −∇v2ξ1 + ιv1 ιv2ω,

〈ξ1,∇ξ2〉+ Lv1α2 − ιv2 d0α1 + ιv1 ιv2ψ)

We refer to [3] for the relevant calculations.

3. A Preliminary Construction: Universal Enveloping and Convolution
Algebras

Let V and W be K-modules, and let (·, ·) : V ⊗ V → W be a symmetric bilinear
form. Consider the graded K-module L = W [2] ⊕ V [1]; it becomes a graded Lie
algebra over K with the only nontrivial brackets given by −(·, ·). Consider its uni-
versal enveloping algebra U (L). As an algebra, it is a quotient of the tensor alge-
bra T (L) (with grading induced by that of L) by the homogeneous ideal generated
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by elements of the form v1 ⊗ v2 + v2 ⊗ v1 + (v1, v2), v⊗w+w⊗ v and w1 ⊗w2 +
w2 ⊗w1. Consequently, for p ≥0, we have

U (L)−p =
[ p

2 ]⊕
k=0

(V ⊗(p−2k)⊗ Sk W )/R

where R is the submodule generated by elements of the form

v1 ⊗· · ·⊗vi ⊗vi+1 ⊗· · ·⊗vp−2k ⊗w1 · · ·wk +
+v1 ⊗· · ·⊗vi+1 ⊗vi ⊗· · ·⊗vp−2k ⊗w1 · · ·wk +
+v1 ⊗· · ·⊗ v̂i ⊗ v̂i+1 ⊗· · ·⊗vp−2k ⊗ (vi , vi+1)w1 · · ·wk

for i =1, . . . , p −2k −1, k =0, . . . ,
[ p

2

]
.

Recall that U (L) is also a graded cocommutative coalgebra with comultiplica-
tion

� :U (L)−→U (L)⊗U (L)

uniquely determined by the requirement that the elements of L be primitive and
that � be an algebra homomorphism. Explicitly,

�(v1 · · ·vp−2kw1 · · ·wk)=
k∑

i=0

p−2k∑
j=0

∑
σ,τ

(−1)σ vσ(1) · · ·vσ( j)wτ(1) · · ·wτ(i)⊗

⊗vσ( j+1) · · ·vσ(p−2k− j)wτ(i+1) · · ·wτ(k)
where σ runs over ( j, p −2k − j)-shuffles, and τ runs over (i, k − i)-shuffles.

Now, recall that, whenever U is a graded K-coalgebra and R is a graded K-
algebra, the graded R-module Hom(U,R) is naturally an R-algebra, called the
convolution algebra (this is a general fact about a pair (comonoid, monoid) in any
monoidal category).

Let us apply this construction to U =U (L) and an arbitrary K-algebra R (con-
centrated in degree 0). Denote the corresponding convolution algebra by A =
A(V,W ;R)= Hom(U (L),R). Since U (L) is non-positively graded and R sits in
degree 0, A is non-negatively graded. Explicitly, for p ≥0, Ap consists of (

[ p
2

]+1)-
tuples

ω=
(
ω0,ω1, . . . , ω[ p

2 ]
)

where

ωk : V ⊗p−2k ⊗ W ⊗k −→R
is symmetric in the W -arguments and satisfying

ωk(. . . , vi , vi+1, . . . ; . . .)+ωk(. . . , vi+1, vi , . . . ; . . .)=
=−ωk+1(. . . , v̂i , v̂i+1, . . . ; (vi , vi+1), . . .) (3.1)
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for all i =1, . . . , p −2k −1. By adjunction, ωk can be viewed as a map

V ⊗p−2k −→Hom(Sk W,R)

Again, since S(W [2]) is a coalgebra (concentrated in even non-positive degrees),
Hom(S(W [2]),R) is an algebra with multiplication given by

H K (w1, . . . ,wi+ j )=
∑

τ∈sh(i, j)

H(wτ(1), . . . ,wτ(i))K (wτ(i+1), . . . ,wτ(i+ j)) (3.2)

This leads to the following formula for the multiplication in A:

(ωη)k(v1, . . . , vp+q−2k)=
=

∑
i+ j=k

∑
σ∈sh(p−2i,q−2 j)

(−1)σωi (vσ(1), . . . , vσ(p−2i))η j (vσ(p−2i+1), . . . , vσ(p+q−2k))

(3.3)

where the multiplication in each summand takes place in Hom(S(W [2]),R)
according to formula (3.2). In particular,

(ωη)0(v1, . . . , vp+q)=
=

∑
σ∈sh(p,q)

(−1)σω0(vσ(1), . . . , vσ(p))η0(vσ(p+1), . . . , vσ(p+q)) (3.4)

where the multiplication in each summand takes place in R.
Recall further that, as any universal enveloping algebra, U (L) has a canonical

increasing filtration

K=U 0 ⊂U 1 ⊂· · ·⊂U n ⊂U n+1 ⊂· · ·⊂U (L)

where U n is the submodule spanned by products of no more than n elements of
L. This induces a decreasing filtration of A=A(V,W ;R) by R-submodules

A⊃Ann(U 1)⊃· · ·⊃Ann(U n)⊃Ann(U n+1)⊃· · ·⊃0

where Ann(U n) denotes the annihilator of U n in A. Now, given q, i ≥0, define

Aq
i =Ann(U q−i−1)∩Aq

and

Ai =
⊕
q≥0

Aq
i

(set Ai = 0 for i < 0). It is easy to see that this defines an increasing filtration on
A which is finite in each (superscript) degree, and that, furthermore, AiA j ⊂Ai+ j
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(in particular, A0 is a subalgebra of A with respect to the multiplication (3.4)).
Explicitly,

Ai ={ω∈A|ωk =0,∀k> i}.

Define, as usual, griAq :=Aq
i /Aq

i−1, and let

grAq =
⊕

i

griAq

The following is then immediate:

PROPOSITION 3.1. There is a canonical isomorphism of graded R-modules

grAHom(S(L),R)

where the grading on the left hand side is with respect to the superscript degree. In
particular,

A0 =gr0A=Hom(S(V [1]),R)

Remark 3.2. If K⊃Q, the symmetrization map

� : S(L)−→U (L)

is a coalgebra isomorphism by the Poincaré–Birkhoff–Witt theorem. Hence, for
any R, the dual map

�∗ :Hom(U (L),R)−→Hom(S(L),R)=Hom(S(V [1]),Hom(S(W [2]),R))

is an isomorphism of algebras. Explicitly,

(�∗ω)k(v1, . . . , vp−2k)= 1
(p −2k)!

∑
σ∈Sp−2k

(−1)σωk(vσ(1), . . . , vσ(p−2k)) (3.5)

4. The Standard Complex

4.1. THE ALGEBRA C(E,R)

Let (E, 〈·, ·〉) be a metric R-module; consider the convolution algebra A =
A(E,�1;R) as in the previous section, with (·, ·)=d0〈·, ·〉. Let C0 =R and for each
p>0, define the submodule C p ⊂Ap as consisting of those ω= (ω0,ω1, . . .) which
satisfy the following two additional conditions:

(1) Each ωk takes values in Xk =HomR(Sk
R�

1,R)⊂Hom(Sk�1,R);
(2) Each ωk is R-linear in the last ((p −2k)-th) argument.
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For e1, . . . , ep−2k ∈ E , ωk(e1, . . . , ep−2k) can be viewed as either a symmetric
k-derivation of R whose value on f1, . . . , fk ∈R will be denoted by

ωk(e1, . . . , ep−2k; f1, . . . , fk)

or as a symmetric R-multilinear function on �1 whose value on a k-tuple
α1, . . . , αk will be similarly denoted by

ω̄k(e1, . . . , ep−2k;α1, . . . , αk)

so that

ω̄k(. . . ;d0 f1, . . . ,d0 fk)=ωk(. . . ; f1, . . . , fk)

Evidently ω̄0 =ω0. Often we shall drop the bar from the notation altogether when
it is not likely to cause confusion.

Remark 4.1. If 〈·, ·〉 is full, in the sense that there exist ei , e′
i ∈E , i =1, . . . , N , such

that
∑

i 〈ei , e′
i 〉=1, then an ω= (ω0,ω1, . . .) is uniquely determined by ω0, for then

ω1(e1, . . . ; f )=−
∑

i

(ω0( f ei , e
′
i , e1, . . .)+ω0(e

′
i , f ei , e1, . . .))

and so on by induction. This condition is very often satisfied and is a great help
when one needs to prove, for instance, that some cochain vanishes.

PROPOSITION 4.2. For all 1≤ i < p −2k the following holds:

ω̄k(. . . , f ei , . . .)= f ω̄k(. . . , ei , . . .)+

+
p−2k−i∑

j=1

(−1) j 〈ei , ei+ j 〉ιd0 f ω̄k+1(. . . , êi , . . . , êi+ j , . . .)

where ια denotes contraction with α∈�1.

Proof. By induction from i = p −2k downward, using (3.1) at each step.

Define C =C(E,R)={C p}p≥0.

PROPOSITION 4.3. C(E,R)⊂A(E,�1;R) is a graded subalgebra.

Proof. Given ω∈C p, η∈Cq we must show that ωη satisfies conditions (1) and (2)
defining C. The first one is clear, while the second one follows from the observation
that, since the expression (3.3) for (ωη)k is a sum over shuffle permutations, the
last argument of (ωη)k occurs either as the last argument of ωi or the last argu-
ment of η j .
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Let s : (E, 〈·, ·〉)−→ (E ′, 〈·, ·〉′) be a map of metric R-modules. It induces a map
s∨ :C(E ′,R)−→C(E,R) given by

(s∨ω)k(e1, . . . , eq−2k)=ωk(s(e1), . . . , s(eq−2k)),

for every ω∈Cq(E ′,R). This map is obviously a morphism of graded R-algebras.
In other words,

PROPOSITION 4.4. The assignment (E, 〈·, ·〉) �→ C(E,R), s �→ s∨ is a contravari-
ant functor from the category MetR of metric R-modules to the category graR of
graded commutative R-algebras.

4.2. THE FILTRATION {Ci }i≥0

The filtration {Ai } on A induces one on C by Ci =Ai ∩C.

PROPOSITION 4.5. There is a canonical isomorphism of graded R-modules

grC HomR(SR(E[1]⊕�1[2]),R)
In particular,

C0 =HomR(SR(E[1]),R)
is a subalgebra of C.

Proof. Observe that, if ω= (ω0, . . . , ωi ,0, . . .)∈ Cq
i , then ωi is completely skew-

symmetric in the first q − 2i variables and hence R-linear in each of them by
Proposition 4.2. Clearly, ωi only depends on the class of ω in griCq , and vanishes
if and only if ω∈Cq

i−1.

Remark 4.6. Observe that, in particular, C0 =C0
0 =R and C1 =C1

0 =HomR(E,R)=
E∨. One always has the natural inclusion 	RE∨ ↪→C0. If E is sufficiently nice (e.g.
locally free of finite rank), this inclusion is an isomorphism, so that C0 is generated
as an algebra by C≤1. Moreover, in that case C≤2 generates all of C.

Remark 4.7. If K ⊃ Q, the image of C(E,R) under the symmetrization map �∗
(3.5) is the subalgebra Ĉ(E,R) of Hom(S(E[1]),Hom(S(�1[2]),R) consisting of
those ω̂= (ω̂0, ω̂1, . . .) which satisfy the following two conditions:

(1) Each ω̂k takes values in Xk =HomR(Sk
R�

1,R)⊂Hom(Sk�1,R);
(2) For any i =1, . . . ,deg ω̂−2k and f ∈R,

ω̂k(. . . , f ei , . . .)= f ω̂k(. . . , ei , . . .)+
+1

2

∑
j �=i

(−1)i− j+θ(i− j)〈ei , e j 〉ιd0 f ω̂k+1(. . . , êi , . . . , ê j , . . .)

where θ is the Heaviside function (so that (−1)θ(i− j)= j−i
| j−i | ).

This algebra is relevant for the Courant bracket-based formulation, which some
researchers may prefer.
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4.3. THE DIFFERENTIAL

Suppose now that (R,E) is equipped with an almost Courant–Dorfman structure.
For η∈Cq(E,R), define dη= ((dη)0, (dη)1, . . .) by setting

(dη)k(e1, . . . , eq−2k+1; f1, . . . , fk)=

=
k∑

µ=1

ηk−1(∂ fµ, e1, . . . , eq−2k+1; f1, . . . , f̂µ, . . . , fk)+

+
q−2k+1∑

i=1

(−1)i−1〈ei ,∂(ηk(e1, . . . , êi , . . . , eq−2k+1; f1, . . . , fk))〉+

+
∑
i< j

(−1)iηk(e1, . . . , êi , . . . , ê j , [ei , e j ], e j+1, . . . , eq−2k+1; f1, . . . , fk) (4.1)

PROPOSITION 4.8. The operator d is a derivation of the algebra C(E,R) of degree
+1; if the almost Courant–Dorfman structure is a Courant–Dorfman structure, it
squares to zero.

In this generality, the only proof we have is a verification of all the claims (that
dCq ⊂Cq+1, d is a derivation and d2 = 0) by a direct calculation. It is completely
straightforward but extremely tedious; to save space and time, we omit it. How-
ever, it is worth noting that, under the conditions of Remark 4.6, it suffices to do
the calculations in low degrees. We display these calculations here as it is certainly
instructive to see how the conditions (4), (5) and (6) of Definition 2.1 imply that
d2 =0. Thus, for f ∈C0 =R we have d f = (d f )0 ∈C1 =E∨ with

(d f )0(e)=〈e,∂ f 〉=ρ(e) f

whereas for λ∈C1 we have dλ= ((dλ)0, (dλ)1) with

(dλ)0(e1, e2)=ρ(e1)(λ(e2))−ρ(e2)(λ(e1))−λ([e1, e2])
(dλ)1(g)=λ(∂g)

Therefore,

(d(d f ))0(e1, e2)=ρ(e1)(ρ(e2) f )−ρ(e2)(ρ(e1) f )−ρ([e1, e2]) f =0

by Proposition 2.13, while

(d(d f ))1(g)=d f (∂g)=〈∂g,∂ f 〉=0

by condition (6) of Definition 2.1.
Now, if ω= (ω0,ω1)∈C2, dω= ((dω)0, (dω)1) where

(dω)0(e1, e2, e3)=ρ(e1)ω0(e2, e3)−ρ(e2)ω0(e1, e3)+ρ(e3)ω0(e1, e2)−
−ω0([e1, e2], e3)−ω0(e2, [e1, e3])+ω0(e1, [e2, e3])

(dω)1(e, f )=ω0(∂ f, e)+ρ(e)ω1( f )
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from which we obtain, using Proposition 2.13:

(d(dλ))0(e1, e2, e3)=λ([[e1, e2], e3]+ [e2, [e1, e3]]− [e1, [e2, e3]])=0

by condition (4) of Definition 2.1, and

(d(dλ))1(e, f )=ρ(∂ f )λ(e)−λ([∂ f, e])=0

by conditions (6) and (5) of Definition 2.1.

COROLLARY 4.9. Given η∈Cq , dη= ((dη)0, (dη)1, . . .) is given by

(dη)k(e1, . . . , eq−2k+1;α1, . . . , αk)=

=
k∑

µ=1

η̄k−1(δαµ, e1, . . . ;α1, . . . , α̂µ, . . . , αk)+

+
q−2k+1∑

i=1

(−1)i−1ρ(ei )η̄k(e1, . . . , êi , . . . ;α1, . . . , αk)+

+
q−2k+1∑

i=1

k∑
µ=1

(−1)i η̄k(e1, . . . , êi , . . . ;α1, . . . , ιρ(ei )d0αµ, . . . , αk)+

+
∑
i< j

(−1)i η̄k(e1, . . . , êi , . . . , ê j , [ei , e j ], e j+1, . . . ;α1, . . . , αk) (4.2)

Proof. It is obvious that

(dη)k(. . . ;d0 f1, . . . ,d0 fk)= (dη)k(. . . ; f1, . . . , fk)

so we only have to prove R-linearity in the α’s. This is done with the help of
Proposition 4.2.

If s :E −→E ′ is a strict morphism of Courant–Dorfman algebras, a quick inspec-
tion of the formulas reveals that s∨ commutes with differentials. We summarize the
preceding discussion in our main theorem, extending Proposition 4.4:

THEOREM 4.10. The assignment (R,E) �→ (C(E,R),d), s �→ s∨ is a contravari-
ant functor from the category CDR of Courant–Dorfman algebras over R and strict
morphisms to the category dgaR of differential graded algebras with zero-degree
component equal to R and R-linear dg morphisms.

Remark 4.11. The tangent complex TE we have constructed (2.4) is indeed the tan-
gent complex of the dg algebra C(E,R) in the sense of algebraic geometry.

COROLLARY 4.12. Given a locally ringed space (X,OX ), there is a (covariant)
functor from the category CAX of Courant algebroids over X to the category dgSX

of differential graded spaces over X .
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The complex (C(E,R),d) will be referred to as the standard complex of (R,E),
and its q-th cohomology module will be denoted by Hq(E,R). It is an analogue,
for Courant–Dorfman algebras, of the de Rham complex of a Lie–Rinehart alge-
bra (R,L) (see Appendix B). In the latter case there is an evident chain map from
the de Rham complex to the Chevalley–Eilenberg complex of the Lie algebra L
with coefficients in the module R. There is an analogous statement in our case:

PROPOSITION 4.13. The assignment η �→ η0 is a chain map from the standard
complex C(E,R) to the Loday–Pirashvili complex CLP(E,R) of the Leibniz algebra
E with coefficients in the symmetric E-module R.

Proof. We have

(dη)0(e1, . . . , eq+1)=

=
q+1∑
i=1

(−1)i−1ρ(ei )η0(e1, . . . , êi , . . . , eq+1)+

+
∑
i< j

(−1)iη0(e1, . . . , êi , . . . , ê j , [ei , e j ], e j+1, . . . , eq+1) (4.3)

which coincides with the expression (C.2) for dL P (η0), where one defines

[e, f ]=ρ(e) f =−[ f, e].

4.4. ON MORPHISMS BETWEEN LIE–RINEHART AND COURANT–DORFMAN

ALGEBRAS

Let L be a Lie–Rinehart algebra and E a Courant–Dorfman algebra. Suppose
p :L−→ E is a morphism in the sense of Definition 2.20. We define the induced
map

p∨ :C(E;R)−→ �̃(L,R)
(see Appendix B) by setting

(p∨ω)(x1, . . . , xq)=ω0(p(x1), . . . , p(xq))

Similarly, given a morphism r :E −→L in the sense of Definition 2.21, we define

r∨ : �̃(L,R)−→C(E,R)
by

(r∨ω)0(e1, . . . , eq)=ω(r(e1), . . . , r(eq))

(r∨ω)i>0 =0

(so the image of r∨ is contained in C0(E,R)).
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PROPOSITION 4.14. The maps p∨ and r∨ are morphisms of differential graded
algebras.

Proof. Given ω∈Cq(L,R), (dr∨ω)0 =(r∨dω)0 by condition (1) of Definition 2.21
and because for alternating cochains, the Loday–Pirashvili formula (4.3) coincides
with the Cartan–Chevalley–Eilenberg formula (B.1), whereas (dr∨ω)1 = 0 by con-
dition (2) of Definition 2.21.

On the other hand, dp∨ − p∨d = 0 by formula (3.1) and conditions (1) and (2)
of Definition 2.20. Details are left to the reader.

In particular, the morphisms ρ : E −→ X1, π : E −→ Ē and i : D −→ E (see
Prop. 2.22) give rise to the corresponding dg maps ρ∨ : �̃R −→ C(E,R), π∨ :
�̃(Ē,R)−→C(E,R) and i∨ :C(E,R)−→ �̃(D,R).

Finally, since the de Rham algebra (�R,d0) is initial in the category dgaR, there
is an evident dg map from �R to each of these dg algebras, commuting with the
above maps. We shall denote this map by ρ∗, where ρ is the anchor. Explicitly,

(ρ∗ω)0(e1, . . . , eq)= ιρ(eq ) · · · ιρ(e1)ω (4.4)

(ρ∗ω)>0 =0 (4.5)

4.5. FILTRATION {Fi }i≥0 AND IDEAL I

Observe that the differential d does not preserve the filtration {Ci }. In fact, for
ω∈Ck , ωk+1 =0 but

(dω)k+1(e1, . . . ;α1, . . . , αk+1)=
k+1∑
µ=1

ωk(δαµ, e1, . . . ;α1, . . . , α̂µ, . . . , αk+1)

does not vanish in general. Nevertheless, this formula suggests a fix. Let us define
Fk ⊂Ck as consisting of ω= (ω0,ω1, . . .) such that, for each i =1, . . . , k, ωi vanishes
if any k − i +1 of its arguments are of the form δα for some α∈�1. Notice that,
because of (3.1), it does not matter which of the arguments those are. Obviously,
Fk+1 ⊂Fk .

PROPOSITION 4.15. dFk ⊂Fk and Fk1Fk2 ⊂Fk1+k2 . In particular, F0 is a differ-
ential graded subalgebra of C(E,R) equal to π∨C(Ē,R).

Proof. The first statement follows by inspection of formula (4.2), using Proposi-
tion 2.15. For the second one, suppose ω∈Fk1 , η∈Fk2 , and consider the expression
(3.3) for (ωη)k :

(ωη)k(e1, . . .)=
∑
i≥1

∑
σ

(−1)σωi (eσ(1), . . .)ηk−i (eσ(degω−2i+1), . . .)

Suppose that n = k1 + k2 − k +1 of the arguments are δα’s. By our assumption, ωi

vanishes if at least r = k1 − i + 1 of its arguments are δα’s, while ηk−i vanishes if
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at least s = k2 − k + i +1 of its arguments are δα’s. Now, in each term on the right
hand side, some m of the arguments of ωi are δα’s, while the n −m remaining δα’s
are arguments of ηk−i . Since r + s = n + 1, either m ≥ r or n − m ≥ s. Therefore,
either ωi or ηk−i vanishes; hence, so does (ωη)k .

The last statement is obvious.

Let us also consider, for each q>0, the submodule Iq ⊂Cq consisting of those
ω= (ω0,ω1, . . .) such that for each k and all α1, . . . , αq−2k ∈�1,

ωk(δα1, . . . , δαq−2k)=0

Let I ={I q}q>0.

PROPOSITION 4.16. I is a differential graded ideal of C(E,R).

Proof. Follows immediately upon inspecting formulas (3.3) and (4.2), in view of
Proposition 2.15.

We expect that the filtrations {Fi } and {I(i)} (powers of the ideal I) will be use-
ful in computing the cohomology of E (see Section 6.5 below).

4.6. SOME CARTAN-LIKE FORMULAS

Given an α∈�1, consider the operator ια :C −→C[−2] defined by (ιαω̄)k = ιαω̄k+1,
i.e

(ιαω̄)k(e1, . . . ;α1, . . . , αk)= ω̄k+1(e1, . . . ;α,α1, . . . , αk) (4.6)

It is easy to check that this defines a derivation of the algebra C(E,R). For f ∈R,
define the operator ι f so that

ι f ω= ιd0 f ω̄ (4.7)

Similarly, for any e ∈E , the operator ιe :C −→C[−1] given by

(ιeω)k(e2, . . .)=ωk(e, e2, . . .) (4.8)

defines a derivation of C(E,R) of degree −1.
Recall that the K-module L = R[2] ⊕ E[1] forms a graded Lie algebra with

respect to the brackets −〈·, ·〉.
PROPOSITION 4.17. The assignments f �→ ι f and e �→ ιe define an action of the
graded Lie algebra L on C(E,R) by derivations.

Proof. The only non-trivial commutation relation is

{ιe1, ιe2}= ι−〈e1,e2〉 (4.9)
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which follows immediately from (3.1).

Let us now define

Le ={ιe,d} and L f ={ι f ,d} (4.10)

Then the following analogues of the well-known Cartan commutation relations
hold:

L f = ι∂ f (4.11)

{L f , ιe}= ι−〈∂ f,e〉 = ι−ρ(e) f ={Le, ι f } (4.12)

{Le1, ιe2}= ι[e1,e2] (4.13)

{L f , Lg}=0 (4.14)

{Le, L f }= L〈e,∂ f 〉 = Lρ(e) f =−{L f , Le} (4.15)

{Le1, Le2}= L [e1,e2] (4.16)

We leave the derivation of these identities as an easy exercise for the reader.

Remark 4.18. The assignment α �→ ια is R-linear while f �→ ι f and e �→ ιe are not.
If d0α=0, one has

Lα ={ια,d}= ιδα
but otherwise the algebra does not close. This is because there are more deriva-
tions of C(E,R) of negative degree than we have accounted for here: there are also
derivations coming from maps φ ∈HomR(E,�1), of the form

(ιφω)k(e1, . . .)=
∑
i≥0

(−1)i−1ιφ(ei )ωk+1(e1, . . . , êi , . . .)

A description of the full algebra of derivations will be done in the sequel.

5. Some Applications

5.1. H2 AND CENTRAL EXTENSIONS

Let us consider extensions of R-modules of the form

R i
� Ê p

�E (5.1)

DEFINITION 5.1. Suppose (E, 〈·, ·〉,∂, [·, ·]) and (Ê, 〈·, ·〉′,∂′, [·, ·]′) are Courant–
Dorfman algebras and p : Ê −→ E is a strict morphism fitting into (5.1). We say
that (5.1) is a central extension of Courant–Dorfman algebras if the following con-
ditions hold:

(1) (i( f ))�=0 for all f ∈R;
(2) [ê, i( f )]=ρ′(ê) f for all ê ∈ Ê and f ∈R, where ρ′ is the anchor of Ê .
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A (necessarily iso) morphism of central extensions is a morphism of extensions
(5.1) which is also a Courant–Dorfman morphism.

PROPOSITION 5.2. The K-module of isomorphism classes of central extensions
(5.1) which are split as metric R-modules is isomorphic to H2(E,R).

Proof. The extension being split as metric R-modules means that Ê is isomor-
phic to E ⊕R as an R-module in such a way that

〈(e1, f1), (e2, f2)〉′ = 〈e1, e2〉 (5.2)

The argument follows the well-known pattern: ∂′ necessarily has the form

∂′ f = (∂ f,−ω1( f )) (5.3)

for some ω1 ∈X1, while the bracket must have the form

[(e1, f1), (e2, f2)]′ = ([e1, e2], ρ(e1) f2 −ρ(e2) f1 +ω0(e1, e2)) (5.4)

for some ω0 such that ω= (ω0,ω1) ∈ C2(E,R); these define a Courant–Dorfman
structure if and only if dω= 0. Conversely, any 2-cocycle ω defines a Courant–
Dorfman structure on E ⊕R by the formulas (5.2), (5.3) and (5.4). Furthermore,
the central extensions given by cocycles ω and ω′ are isomorphic if and only if
ω−ω′ = dλ for a λ∈ C1(E,R)= E∨, the isomorphism given by ê �→ ê + i(λ(p(ê))),
and conversely, every such λ gives an isomorphism of extensions. We leave it to the
reader to check the details.

EXAMPLE 5.3. Every closed ω ∈ �2,cl gives rise to a central extension of any
Courant–Dorfman algebra by the cocycle ρ∗ω [(4.4),(4.5)].

5.2. H3 AND THE CANONICAL CLASS

Given an almost Courant–Dorfman algebra E , consider the cochain �= (�0,�1)∈
C3(E,R) defined as follows:

�0(e1, e2, e3)=〈[e1, e2], e3〉 (5.5)

�1(e; f )=−ρ(e) f (5.6)

To see that �∈C3, we need to verify relations (3.1):

�0(e1, e2, e3)+�0(e2, e1, e3)=
=〈[e1, e2], e3〉+〈[e2, e1], e3〉=ρ(e3)〈e1, e2〉=−�1(e3; 〈e1, e2〉)

and

�0(e1, e2, e3)+�0(e1, e3, e2)=
=〈[e1, e2], e3〉+〈[e1, e3], e2〉=ρ(e1)〈e2, e3〉=−�1(e1; 〈e2, e3〉)

are consequences of conditions (3) and (2) of Definition (2.1), respectively.
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PROPOSITION 5.4. If E is a Courant–Dorfman algebra, d�=0; for any ψ ∈�3,cl,
the Courant–Dorfman algebra Tw(ψ)(E) has

�ψ =�+ρ∗ψ

Proof. In fact, a computation using conditions (2) and (3) of Definition 2.1
yields

(d�)0(e1, e2, e3, e4)=2〈[e1, [e2, e3]]− [[e1, e2], e3]− [e2, [e1, e3]], e4〉 (5.7)

(d�)1(e1, e2; f )=2〈[∂ f, e1], e2〉 (5.8)

−(d�)2( f1, f2)=2〈∂ f1,∂ f2〉 (5.9)

Therefore, d�= 0 by conditions (4), (5) and (6) of Definition 2.1. The second
statement follows immediately from the formulas (2.10), (4.4) and (4.5).

We shall call � the canonical cocycle of E and its class [�] ∈ H3(E,R) – the
canonical class of E .

Remark 5.5. If i :D −→E is an isotropic submodule, i∨� is R-trilinear and alter-
nating; if D is Dirac, i∨�=0. When 〈·, ·〉 is strongly non-degenerate and D is max-
imally isotropic, we can say “and only if”. This is the criterion originally used by
Courant and Weinstein [5] to define Dirac structures in Q0 = X1 ⊕�1 (Example
2.25).

EXAMPLE 5.6. For the “original” Courant–Dorfman algebra Q0, we have �=
dω where

ω0((v1, α1), (v2, α2))= ιv1α2 − ιv2α1

ω1 =0

(proof left to the reader). Hence, the canonical class of Q0 is zero. It follows that
for any ψ ∈�3,cl the canonical class of Qψ is the image of [ψ]∈ H3

dR.

6. The Non-Degenerate Case

Let us now restrict attention to the special case of Courant–Dorfman algebras
which are non-degenerate in the sense of Definition 2.3.

6.1. THE POISSON BRACKET

Recall that a strongly non-degenerate 〈·, ·〉 has an inverse

{·, ·} :E∨ ⊗R E∨ −→R
defined by formula (2.1). This operation can be extended to a Poisson bracket on
C =C(E,R):

{·, ·} :C ⊗C −→C[−2]
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which we shall now define. Recall that, for an ω= (ω0,ω1, . . .)∈ C p, each ωk is a
K-linear map

ωk :E⊗p−2k −→Xk

which is R-linear in the (p − 2k)-th argument. Hence, by adjunction, it gives rise
to a K-linear map

ω̃k :E⊗p−2k−1 −→HomR(Sk�1,E∨)

defined as follows:

ω̃k(e1, . . . , ep−2k−1)( f1, . . . , fk)(e)=ωk(e1, . . . , ep−2k−1, e; f1, . . . , fk)

Define

ω
�
k :E⊗p−2k−1 −→HomR(Sk�1,E)

by ω�k = (ω̃k)
�. Denote the inverse of (·)� by (·)�.

Remark 6.1. These maps define an isomorphism (extending that of Definition 2.3)
of graded R-modules between C(E,R) and C(E,E) whose elements are tuples T =
(T0,T1, . . .) where the maps

Tk :E⊗p−2k−1 −→HomR(Sk�1,E)

satisfy the conditions obtained by applying (·)� to equations (3.1); these make
sense even when 〈·, ·〉 is degenerate.

Given H ∈ HomR(Si�1,E), K ∈ HomR(S j�1,E), we can obtain 〈H · K 〉 ∈
HomR(Si+ j�1,R) by composing the product (A.1) in X with 〈·, ·〉, i.e.

〈H · K 〉( f1, . . . , fi+ j )=
∑

τ∈sh(i, j)

〈H( fτ(1), . . . , fτ(i)), K ( fτ(i+1), . . . , fτ(i+ j))〉

Now let ω= (ω0,ω1, . . .)∈C p, η= (η0, η1, . . .)∈Cq . Let us define operations

〈ω •η〉= (〈ω •η〉0, 〈ω •η〉1, . . .)

and

ω�η= ((ω�η)0, (ω�η)1, . . .)

with

〈ω •η〉k, (ω�η)k :E⊗p+q−2k−2 −→Xk
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given by the formulas

〈ω •η〉k(e1, . . . , ep+q−2k−2)=
= (−1)q−1

∑
i+ j=k

∑
σ

(−1)σ 〈ω�i (eσ(1), . . . , eσ(p−2i−1)) ·η�j (eσ(p−2i), . . . , eσ(p+q−2k−2))〉

(6.1)

where σ runs over sh(p −2i −1,q −2 j −1), and

(ω�η)k(e1, . . . , ep+q−2k−2)=
=

∑
i+ j=k

∑
σ

(−1)σωi+1(eσ(1), . . . , eσ(p−2i−2))◦η j (eσ(p−2i−1), . . . , eσ(p+q−2k−2))

(6.2)

where σ runs over sh(p − 2i − 2,q − 2 j), and ◦ in each summand is defined as in
(A.3).

And finally, define

{ω,η}=ω�η+〈ω •η〉− (−1)pqη�ω (6.3)

Remark 6.2. The subalgebra C0 =HomR(S(E[1]),R) is also closed under {·, ·}; the
restriction is given by

{ω0, η0}=〈ω •η〉0

and in particular, for λ,µ∈ C1, the bracket reduces to the formula (2.1). At the
other extreme, E = 0 (“vacuously non-degenerate”), we get C = HomR(SR(�1[2]),
R), and the formulas (3.3) and (6.3) reduce, respectively, to the classical formulas
(A.1) and (A.2).

THEOREM 6.3. Let E be a metric R-module with a strongly non-degenerate 〈·, ·〉.
(i) The formula (6.3) defines a non-degenerate Poisson bracket on the algebra

C(E,R) of degree −2;
(ii) For any almost Courant–Dorfman structure on E , the canonical cochain �,

defined by formulas (5.5) and (5.6), and the derivation d, defined by formula
(4.1), are related by

d =−{�, ·}
(iii) The almost Courant–Dorfman structure is a Courant–Dorfman structure if

and only if

{�,�}=0 (6.4)

Proof. The first two statements are proved by a direct verification. The “if” part
of (iii) follows from (ii) and Proposition 5.4, the “only if” – by formulas (5.7),
(5.8), (5.9), the nondegeneracy of 〈·, ·〉 and the assumption that 1

2 ∈K.
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Remark 6.4. Observe that [·, ·] and ∂ can be recovered from � via

[e1, e2]=��0(e1, e2)

−∂ f =��1( f )

So the Poisson bracket {·, ·} defines the differential graded Lie algebra controlling
the deformation theory of Courant–Dorfman algebras with fixed underlying met-
ric module with non-degenerate 〈·, ·〉. In fact, we can use (·)� to lift {·, ·} to C(E,E)
(Remark 6.1) and obtain an explicit description of this bracket which makes sense
even if 〈·, ·〉 is degenerate. This is similar to the description of the deformation
complex of a Lie algebroid by Crainic and Moerdijk [6]. We shall postpone writ-
ing down these formulas until the sequel to this paper, dealing with modules and
deformation theory.

We should mention, however, that, under the assumptions that E be projective
and finitely generated, and 〈·, ·〉 be full and strongly non-degenerate, the complex
C(E,E) was already considered by Keller and Waldmann [13] who obtained for it
a result (Theorem 3.17 of loc. cit.) equivalent to our Theorem 6.3 for C(E,R). The
additional assumptions considerably reduce the amount of necessary calculations,
in view of Remarks 4.1 and 4.6.

6.2. THE CANONICAL CLASS AS OBSTRUCTION TO RE-SCALING

The canonical class [�] has a familiar deformation-theoretic interpretation. Let t
be a formal variable, and extend everything K[[t]]-linearly to R[[t]], E[[t]]. If �
satisfies the Maurer-Cartan equation (6.4) and thus defines a Courant–Dorfman
structure on (R,E), so does �t = et� on (R[[t]],E[[t]]). The question is, when is
�t isomorphic to �? “Isomorphic” here means that there exists an automorphism
φ(t) of the Poisson algebra C[[t]] with φ(0)= id, and whose infinitesimal generator
is Hamiltonian with respect to an ω(t)∈C2[[t]], such that

φ(t)�=�t

Differentiating at t =0 immediately yields

dω(0)=�
so in particular [�] = 0. Conversely, if this is the case, φ(t)= exp(t{ω(0), ·}) does
the trick.

If K⊃R, we can ask the same question for t a real number, rather than a for-
mal variable. In this case, the condition [�]=0 is still necessary but not sufficient
unless there exists an ω(t) that integrates to a flow.

6.3. CARTAN RELATIONS AND ITERATED BRACKETS

The following is easily verified:
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PROPOSITION 6.5. Given f ∈R, e ∈E ,

−ι f ={ f, ·}
ιe ={e�, ·}

where ι f and ιe are given by (4.7) and (4.8). Thus, the equations (4.9) – (4.16)
express commutation relations among Hamiltonian derivations of C(E,R), analogous
to the well-known Cartan relations among derivations of �R.

COROLLARY 6.6. For any ω = (ω0,ω1, . . .) ∈ C p(E,R), the following relation
holds:

ωk(e1, . . . , ep−2k; f1, . . . , fk)=
= (−1)

(p−2k)(p−2k−1)
2 {· · · {ω, e�1}, · · · }, e�p−2k}, f1}, · · · }, fk} (6.5)

6.4. RELATION WITH GRADED SYMPLECTIC MANIFOLDS

In this subsection we follow the notation and terminology of [19]. Let M0 be a
finite-dimensional C∞ manifold, E −→ M0 a vector bundle of finite rank equipped
with a pseudometric 〈·, ·〉. Consider the isometric embedding

j : E −→ E ⊕ E∗

e �−→
(

e,
1
2

e�
)

with respect to the canonical pseudometric on E ⊕ E∗, inducing an embedding of
graded manifolds

j[1] : E[1]−→ (E ⊕ E∗)[1]

Define M = M(E) to be the pullback of

T ∗[2]E[1] p−→ (E ⊕ E∗)

along j[1], and let 
∈�2(M) be the pullback of the canonical symplectic form
on T ∗[2]E[1]. This 
 is closed, has degree +2 with respect to the induced grad-
ing, and is non-degenerate if and only if 〈·, ·〉 is, in which case its inverse gives a
Poisson bracket on the algebra C(M) of polynomial functions on M , of degree −2.
Conversely, we proved in [19] that every degree-two graded symplectic manifold is
isomorphic to M(E) for some E .

THEOREM 6.7. Let R=C∞(M0), E =�(E). The map

� :C(M(E))−→C(E,R)
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given, for ω∈C p(M(E)), by

(�ω)k(e1, . . . , ep−2k; f1, . . . , fk)=
= (−1)

(p−2k)(p−2k−1)
2 {· · · {ω, e�1}, · · · }, e�p−2k}, f1}, · · · }, fk}

is an isomorphism of graded Poisson algebras.

Proof. That � takes values in C(E,R) (i.e. the relations (3.1) hold) is a conse-
quence of the Jacobi identity for {·, ·} and (2.1). That � is a map of Poisson alge-
bras follows by applying Lemma 6.8 below to � being first the product and then
the Poisson bracket on C(M(E)). The injectivity of � amounts to the statement
that ω is uniquely determined by the functions (�ω)k , k = 0,1, . . . , [degω/2]; this
is most easily seen in local coordinates where these functions are just the Taylor
coefficients of ω. Surjectivity is a consequence of Corollary 6.6.

LEMMA 6.8. Let A be a K-module equipped with a bilinear operation � : A⊗ A−→
A; let D1, . . . , Dk : A −→ A be K-linear derivations of �, and let D = D1 · · · Dn . Then

D(a �b)=
∑

i+ j=k

∑
σ∈sh(i, j)

(Dσ(1) · · · Dσ(i)a) � (Dσ(i+1) · · · Dσ(k)b)

Proof. Induction.

If A and the D’s are graded, the lemma holds with appropriate Koszul signs put
in place.

6.5. RELATION WITH “NAIVE COHOMOLOGY”

Let E be a Courant–Dorfman algebra, K=ker ρ, Ē =E/δ�1. The map (·)� :E →E∨
extends to

(·)� :	RK−→C(E,R)
whose image is actually contained in F0, in view of (2.7). For R= C∞(M0), E =
�(E) and 〈·, ·〉 non-degenerate, this map is an isomorphism onto F0, which in turn
is isomorphic to C(Ē,R) (see Section 4.5). Stiénon and Xu [24] defined a differ-
ential on the algebra 	RK (in view of this isomorphism, it is just the standard
differential for the Lie–Rinehart algebra Ē) and called its cohomology the “naive
cohomology” of the Courant algebroid E . They conjectured that, if ρ is surjective,
the inclusion

�−1 ◦ (·)� :	RK−→C(M(E))
is a quasi-isomorphism. This was proved by Ginot and Grutzmann [10] who also
obtained further results by considering the spectral sequence associated to the fil-
tration of C(M(E)) by the powers of what they called “the naive ideal”. This ideal
corresponds under � to the ideal I we defined in Section 4.5.
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Remark 6.9. For general (R,E, 〈·, ·〉) it is not known (and probably false) that the
image of 	RK in C(E,R) is closed under d.

7. Concluding Remarks, Speculations and Open Ends

In conclusion, let us mention a few important issues we have not touched upon
here, which we plan to address in a sequel (or sequels) to this paper.

7.1. THE PRE-SYMPLECTIC STRUCTURE

The algebra C(E,R) has an extra structure: a closed 2-form 
 ∈�2
C which has

degree 2 with respect to induced grading, and is d-invariant in the sense that

Ld
=0 (7.1)

where L is the Lie derivative operator on �C . This two-form exists on general
principles: for strongly non-degenerate 〈·, ·〉 it is just the inverse of the Poisson ten-
sor (6.3), while for R = C∞(M0) and E =�(E) the construction from [19] yields

 for an arbitrary 〈·, ·〉 (see Section 6.4 for a review). The formulas (2.5) define
the induced bilinear form on the tangent complex TE ; its δ-invariance (2.6) is just
the linearization of (7.1). By Dirac’s formalism [7] adapted to the graded setting,
the closed 2-form 
 induces a Poisson bracket on a certain subalgebra C�(E,R) of
C(E,R).

7.2. MORPHISMS

The functors we have constructed,

MetR −→ graop
R

(E, 〈·, ·〉) �−→C(E,R)

and

CDR −→ dgaop
R

(E, 〈·, ·〉,∂, [·, ·]) �−→ (C(E,R),d)

are not fully faithful for two reasons. The first has to do with infinite dimensional-
ity issues: not all maps F∨ →E∨ come from maps E →F , duals of tensor products
are not tensor products of duals, and so on. These issues can be dealt with by call-
ing those maps of duals which are duals of maps admissible and restricting atten-
tion only to such maps; one can similarly define admissible derivations, and so on.
Of course, this only makes sense for objects in the image of the above functors.

However, even if we restrict attention to the finite-dimensional and locally free
case, the functors above are still not full. This is because we have only defined
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strict maps of Courant–Dorfman algebras; the more general notion of a lax map
can be obtained as admissible dg map preserving 
 in an evident way; this way we
can also describe maps of Courant–Dorfman algebras over different base rings.

Finally, we have defined (strict) morphisms from Lie–Rinehart to Courant–
Dorfman algebras and back, but no category containing both kinds of algebras
as objects. This problem can be solved by introducing “Lie–Rinehart 2-algebras”
(algebraic analogues of Lie 2-algebroids) and their weak (and maybe also higher)
morphisms, which can again be reduced to studying dg algebras of a certain kind
and admissible dg morphisms between them.

7.3. MODULES

We have not defined the notion of a module over a Courant–Dorfman algebra and
cohomology with coefficients, except in the trivial module R. Again, this can be
done by analyzing (the derived category of) dg modules over the dga C(E,R) and
trying to describe them explicitly in terms of E . It is not clear though what, if any,
compatibility with 
 we should require.

7.4. THE COURANT–DORFMAN OPERAD

The infinite-dimensionality problems mentioned above arise because our construc-
tion of the algebra C(E;R) involves dualization. It seems more natural to try to
construct some sort of coalgebra instead. In operad theory, Koszul duality pro-
vides a systematic way of obtaining such a differential graded coalgebra from an
algebra over a given quadratic operad. There is a an operad, CD, on the set of
two colors, whose algebras are Courant–Dorfman algebras; as operads go, this is
a pretty nasty one: inhomogeneous cubic, so Koszul duality does not apply. How-
ever, if 〈·, ·〉 is non-degenerate, one can replace ∂ by an action of E on R via the
anchor ρ and get rid of the offending relations, ending up with an algebra over a
nice homogeneous quadratic operad (this is actually the formulation given in [19]).
Of course, non-degeneracy is not a condition that can be expressed in operadic
terms; more importantly, even if we ignore this and try to apply Koszul duality to
the resulting quadratic operad, we will get a wrong answer, because we are really
interested in Courant–Dorfman structures over a fixed underlying metric module
(which we can assume to be non-degenerate if we want to). What is relevant in this
situation (which also arises in several other contexts we know of) is a kind of rela-
tive deformation theory for algebras over a pair of operads P ⊂ Q, where we want
to vary the Q-algebra structure while keeping the underlying P-structure fixed. As
far as we are aware, such a theory is not yet available, but it would be interesting
and useful to try to develop it.
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Appendix A: Kähler Differential forms and Multiderivations

Let R be a commutative K-algebra, M an R-module. A K-linear map

D :R−→M

is called a derivation if it satisfies the Leibniz rule:

D( f g)= (D f )g + f (Dg) ∀ f, g ∈R

M-valued derivations form an R-module denoted Der(R,M); the assignment is
functorial in M.

The functor M �→ Der(R,M) is (co)representable: there exists an R-module
�1 =�1

R, unique up to a unique isomorphism, together with a natural (in M) iso-
morphism of R-modules

Der(R,M)HomR(�1,M)

In particular, putting M=�1, the identity map on the right hand side corresponds
to the universal derivation

d0 :R−→�1

�1 is referred to as the module of Kähler differentials; it can be described explic-
itly as consisting of formal finite sums of terms of the form f d0g with f, g ∈ R,
subject to the Leibniz relation

d0( f g)= (d0 f )g + f d0g
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The algebra of Kähler differential forms is obtained by taking �= {�k}k≥0 with
�k =	k

R�
1. It is associative and graded-commutative with respect to exterior mul-

tiplication. The universal derivation d0 extends to an odd derivation of � satisfy-
ing d2

0 = 0, called the de Rham differential, or the exterior derivative. The algebra
of Kähler differential forms is the universal differential algebra containing R.

The module X1 =Der(R,R) forms a Lie algebra under the commutator bracket
{·, ·}. By the universal property of �1 one has

X1 HomR(�1,R)= (�1)∨

Given v∈X1, we denote the corresponding operator on the right hand side by ιv.
It extends to a unique odd derivation of �, denoted by the same symbol. The Lie
derivative operator is defined by the Cartan formula

Lv ={d0, ιv}

The operators ιv, Lv and d0 are subject to the usual Cartan commutation relations

{ιv, ιw}=0; {Lv, ιw}= ι{v,w}; {Lv, Lw}= L{v,w},

describing an action of the differential graded Lie algebra T [1]X1 = X1[1] ⊕ X1

on �.
Kähler differential forms should be distinguished from the usual differential

forms �̃R = {�̃k}k≥0 on R, where �̃k is defined as the module of alternating
k-multilinear functions on X1:

�̃k =HomR(	RX1,R)

Of course, one has the canonical inclusion

�=	R�1 ↪→ (	R(�1)∨)∨ = �̃

which generally fails to be an isomorphism unless R satisfies certain finiteness con-
ditions. Nevertheless, the exterior multiplication and differential d0 extend to �̃

and are defined by the usual Cartan formulas.
Let X0 =R and, for k> 0, let Xk denote the R-module of symmetric k-deriva-

tions of R, that is, symmetric k-linear forms (over K) on R with values in R which
are derivations in each argument. Again, by abstract nonsense we have

Xk HomR(Sk
R�

1,R)

The function on the right hand side corresponding to a k-derivation H on the left
will be denoted by H̄ , so that

H( f1, . . . , fk)= H̄(d0 f1, . . . ,d0 fk).
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The graded module of symmetric multi-derivations, X = {Xk}k≥0, forms a graded
commutative algebra over R (if we assign to elements of Xk degree 2k); the mul-
tiplication is given by the following explicit formula:

H K ( f1, . . . , fi+ j )=
∑

τ∈sh(i, j)

H( fτ(1), . . . , fτ(i))K ( fτ(i+1), . . . , fτ(i+ j)) (A.1)

Furthermore, X has a natural Poisson bracket, extending the commutator of deri-
vations and the natural action of X1 on R; it is given by the formula:

{H, K }= H ◦ K − K ◦ H (A.2)

where

H ◦ K ( f1, . . . , fi+ j−1)=
∑

τ∈sh(i, j−1))

H(K ( fτ(1), . . . , fτ(i)), fτ(i+1), . . . , fτ(i+ j−1))

(A.3)

for H ∈Xi , K ∈X j . This Poisson bracket has degree −2 with respect to the grading
just introduced.

Given an α ∈�1, denote by ια the evident contraction operator on X. It is a
derivation of the multiplication, but not of the Poisson bracket, unless d0α=0.

Appendix B: Lie–Rinehart Algebras

DEFINITION B.1. A Lie–Rinehart algebra consists of the following data:

• a commutative K-algebra R;
• an R-module L;
• an R-module map ρ :L−→X1 =Der(R,R), called the anchor;
• a K-bilinear Lie bracket [·, ·] :L⊗L−→L.

These data are required to satisfy the following additional conditions:

(1) [x1, f x2]= f [x1, x2]+ (ρ(x1) f )x2;
(2) ρ([x1, x2])={ρ(x1), ρ(x2)}
for all x1, x2 ∈L, f ∈R.

A morphism of Lie–Rinehart algebras over R is a map of the underlying
R-modules commuting with anchors and brackets in an obvious way. Lie–Rine-
hart algebras over R form a category denoted by LRR.

EXAMPLE B.2. X1 =Der(R,R) becomes a Lie–Rinehart algebra with respect to
the commutator bracket {·, ·} and the identity map X1 −→X1 as the anchor. This
is the terminal object in LRR: the anchor of each Lie–Rinehart algebra gives the
unique map.
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EXAMPLE B.3. Let M be an R-module; a derivation of M is a pair (D, σ ),
where D :M−→M is a K-linear map and σ =σD ∈Der(R,M), satisfying the fol-
lowing compatibility condition:

D( f m)= f D(m)+σ( f )m

Derivations of M form an R-module which we denote Der(M); moreover,
Der(M) is a Lie–Rinehart algebra with respect to the commutator bracket and the
anchor π given by the assignment (D, σ ) �→σ .

DEFINITION B.4. A representation of a Lie–Rinehart algebra L on an R-mod-
ule M is a map of Lie–Rinehart algebras ∇ : L −→ Der(M). In other words, ∇
assigns, in an R-linear way, to each x ∈L a derivation (∇x , ρ(x)) such that

∇[x,y] = {∇x ,∇y}
An R-module M equipped with a representation of L is said to be an L-module.

EXAMPLE B.5. For every Lie–Rinehart algebra L, R is an L-module with ∇ =ρ.

EXAMPLE B.6. Let L be a Lie–Rinehart algebra and let K = ker(ρ). Then K
becomes an L-module with

∇x (y)=[x, y]
for x ∈L, y ∈K. Moreover, K is a Lie algebra over R with respect to the restricted
bracket, and ∇ acts by derivations of this bracket.

Given an L-module M, one defines for each q ≥0 the module of q-cochains on
L with coefficients in M to be

�̃q(L,M)=HomR(	RL,M).

The differential d : �̃q(L,M)−→ �̃q+1(L,M) is given by the standard (Chevalley–
Eilenberg–Cartan–de Rham) formula

dη(x1, . . . , xq+1)=
q+1∑
i=1

(−1)i−1∇xi η(x1, . . . , x̂i , . . . , xq+1)+

+
∑
i< j

(−1)i+ jη([xi , x j ], x1, . . . , x̂i , . . . , x̂ j , . . . , xq+1) (B.1)

Remark B.7. Notice that, for L = X1 and M = R, this yields �̃R, rather than
�R. It is possible (and probably more correct in general) to consider the complex
�(L,M) with differential given by the universal property of the Kähler forms.

Remark B.8. The term “Lie–Rinehart algebra” is due to Huebschmann [12], and
is based on the work of G.S. Rinehart who studied these structures in a seminal
paper [16] (although Rinehart himself referred to earlier work of Herz and Palais).
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Appendix C: Leibniz Algebras, Modules and Cohomology

This section follows Loday and Pirashvili [15] closely. A Leibniz algebra over K is
a K-module E equipped with a bilinear operation

[·, ·] :E ⊗E −→E

satisfying the following version of the Jacobi identity:

[e1, [e2, e3]]= [[e1, e2], e3]+ [e2, [e1, e3]]
(i.e., [e, ·] is a derivation2 of [·, ·] for each e ∈E).

Given a Leibniz algebra E , an E-module is a K-module M equipped with two
structure maps: a left action

E ⊗M−→M
(e,m) �→ [e,m]

and a right action

M⊗E −→M
(m, e) �→ [m, e]

satisfying the following equations:

[e1, [e2,m]]= [[e1, e2],m]+ [e2, [e1,m]]
[e1, [m, e2]]= [[e1,m], e2]+ [m, [e1, e2]]
[m, [e1, e2]]= [[m, e1], e2]+ [e1, [m, e2]]

Maps of E-modules are defined in an obvious way.
Given any Leibniz algebra E , a left E-action on M satisfying the first of the

above three equations can be extended to an E-module structure in two standard
ways, by defining the right action either by

[m, e] :=−[e,m]
or by

[m, e]=0

2In fact, this defines a left Leibniz algebra, whereas Loday and Pirashvili considered right
Leibniz algebras, in which [·, e] is a right derivation of [·, ·]. The assignment [·, ·]−→[·, ·]op where

[x, y]op =−[y, x]

establishes an isomorphism of the categories of these two kinds of Leibniz algebras; the formulas
for modules and differentials have to be modified accordingly.
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Following Loday and Pirashvili, we call the first one symmetric, the second anti-
symmetric.

Given a Leibniz algebra E and an E-module M, define the complex of cochains
on E with values in M by setting, for q ≥0,

Cq
LP(E,M)=Hom(E⊗q

,M)

with the differential

dLP :Cq
LP(E,M)−→Cq+1

LP (E,M)

given by

dLPη(e1, . . . , eq+1)=
q∑

i=1

(−1)i−1[ei , η(. . . , êi , . . .)]+

+(−1)q+1[η(e1, . . . , eq), eq+1]+
+

∑
i< j

(−1)iη(e1, . . . , êi , . . . , ê j , [ei , e j ], e j+1, . . . , eq+1)

(C.1)

If the module M is symmetric, this reduces to

dLPη(e1, . . . , eq+1)=
q+1∑
i=1

(−1)i−1[ei , η(. . . , êi , . . .)]+

+
∑
i< j

(−1)iη(e1, . . . , êi , . . . , ê j , [ei , e j ], e j+1, . . . , eq+1)

(C.2)

Open Access This article is distributed under the terms of the Creative Commons Attri-
bution Noncommercial License which permits any noncommercial use, distribution, and
reproduction in any medium, provided the original author(s) and source are credited.
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