81 research outputs found

    Global and Ocular Hypothermic Preconditioning Protect the Rat Retina from Ischemic Damage

    Get PDF
    Retinal ischemia could provoke blindness. At present, there is no effective treatment against retinal ischemic damage. Strong evidence supports that glutamate is implicated in retinal ischemic damage. We investigated whether a brief period of global or ocular hypothermia applied 24 h before ischemia (i.e. hypothermic preconditioning, HPC) protects the retina from ischemia/reperfusion damage, and the involvement of glutamate in the retinal protection induced by HPC. For this purpose, ischemia was induced by increasing intraocular pressure to 120 mm Hg for 40 min. One day before ischemia, animals were submitted to global or ocular hypothermia (33uC and 32uC for 20 min, respectively) and fourteen days after ischemia, animals were subjected to electroretinography and histological analysis. Global or ocular HPC afforded significant functional (electroretinographic) protection in eyes exposed to ischemia/reperfusion injury. A marked alteration of the retinal structure and a decrease in retinal ganglion cell number were observed in ischemic retinas, whereas global or ocular HPC significantly preserved retinal structure and ganglion cell count. Three days after ischemia, a significant decrease in retinal glutamate uptake and glutamine synthetase activity was observed, whereas ocular HPC prevented the effect of ischemia on these parameters. The intravitreal injection of supraphysiological levels of glutamate induced alterations in retinal function and histology which were significantly prevented by ocular HPC. These results support that global or ocular HPC significantly protected retinal function and histology from ischemia/reperfusion injury, probably through a glutamatedependent mechanism.Fil: Salido E.Fil: Dorfman D.Fil: Bordone, Melina.Fil: Chianelli Mónica S.Fil: González Fleitas Mf.Fil: Rosenstein Re

    Oxidative stress damage circumscribed to the central temporal retinal pigment epithelium in early experimental non-exudative age-related macular degeneration

    Get PDF
    Non-exudative age-related macular degeneration (NE-AMD) represents the leading cause of blindness in the elderly. The macular retinal pigment epithelium (RPE) lies in a high oxidative environment because its high metabolic demand, mitochondria concentration, reactive oxygen species levels, and macular blood flow. It has been suggested that oxidative stress-induced damage to the RPE plays a key role in NE-AMD pathogenesis. The fact that the disease limits to the macular region raises the question as to why this area is particularly susceptible. We have developed a NE-AMD model induced by superior cervical ganglionectomy (SCGx) in C57BL/6J mice, which reproduces the disease hallmarks exclusively circumscribed to the temporal region of the RPE/outer retina. The aim of this work was analyzing RPE regional differences that could explain AMD localized susceptibility. Lower melanin content, thicker basal infoldings, higher mitochondrial mass, and higher levels of antioxidant enzymes, were found in the temporal RPE compared with the nasal region. Moreover, SCGx induced a decrease in the antioxidant system, and in mitochondria mass, as well as an increase in mitochondria superoxide, lipid peroxidation products, nuclear Nrf2 and heme oxygenase-1 levels, and in the occurrence of damaged mitochondria exclusively at the temporal RPE. These findings suggest that despite the well-known differences between the human and mouse retina, it might not be NE-AMD pathophysiology which conditions the localization of the disease, but the macular RPE histologic and metabolic specific attributes that make it more susceptible to choroid alterations leading initially to a localized RPE dysfunction/damage, and secondarily to macular degeneration.Fil: Dieguez, Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Romeo, Horacio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Alaimo, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: González Fleitas, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Aranda, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Rosenstein, Ruth Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Dorfman, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentin

    Therapeutic Benefit of Radial Optic Neurotomy in a Rat Model of Glaucoma

    Get PDF
    Radial optic neurotomy (RON) has been proposed as a surgical treatment to alleviate the neurovascular compression and to improve the venous outflow in patients with central retinal vein occlusion. Glaucoma is characterized by specific visual field defects due to the loss of retinal ganglion cells and damage to the optic nerve head (ONH). One of the clinical hallmarks of glaucomatous neuropathy is the excavation of the ONH. The aim of this work was to analyze the effect of RON in an experimental model of glaucoma in rats induced by intracameral injections of chondroitin sulfate (CS). For this purpose, Wistar rats were bilaterally injected with vehicle or CS in the eye anterior chamber, once a week, for 10 weeks. At 3 or 6 weeks of a treatment with vehicle or CS, RON was performed by a single incision in the edge of the neuro-retinal ring at the nasal hemisphere of the optic disk in one eye, while the contralateral eye was submitted to a sham procedure. Electroretinograms (ERGs) were registered under scotopic conditions and visual evoked potentials (VEPs) were registered with skull-implanted electrodes. Retinal and optic nerve morphology was examined by optical microscopy. RON did not affect the ocular hypertension induced by CS. In eyes injected with CS, a significant decrease of retinal (ERG a- and b-wave amplitude) and visual pathway (VEP N2-P2 component amplitude) function was observed, whereas RON reduced these functional alterations in hypertensive eyes. Moreover, a significant loss of cells in the ganglion cell layer, and Thy-1-, NeuN- and Brn3a- positive cells was observed in eyes injected with CS, whereas RON significantly preserved these parameters. In addition, RON preserved the optic nerve structure in eyes with chronic ocular hypertension. These results indicate that RON reduces functional and histological alterations induced by experimental chronic ocular hypertension

    Non-Exudative Age-Related Macular Degeneration: New Experimental Insights

    No full text
    Non-exudativeage-related macular degeneration (NE-AMD), the main cause of blindness in theelderly, is a condition involving progressive atrophy of the retinal pigment epitheliumand photoreceptors exclusively localized at the central retina (i.e., themacula). Clinically, NE-AMD appears as a progressive defect in central vision,leading to legal blindness. NE-AMD is a multi-factorial disease; retinalpigmentary epithelium lipofuscin accumulation, choroidal blood flowinsufficiency, inflammation, and oxidative stress have been involved in thedisease etiopathogenesis. The observation that the disease is circumscribed tothe macular area, raises the question as to why the macula is particularlysusceptible to the disease, while the rest of the retina remains (at leastclinically) unaltered. Although there are no definitive answers to thisquestion, the explanation is likely to be related to both the metabolic andstructural attributes of this particular retinal region that differ from itssurroundings, and to the alterations induced by the disease itself. Over thelast decade, there have been an increasing number of reports describing rodent[R1]  models (mostly in mice), which mimic somecharacteristics compatible with human NE-AMD. However, most of them are notable to reproduce the hallmarks of the disease (i.e., its specificlocalization), which added to the lack of a macula in rodents, has made thestudy of NE-AMD particularly difficult. Although impairment of choroidal bloodflow is one of the supposed pathogenic mechanisms, there were no experimentalmodels addressing this risk factor. In this chapter, we will discuss: 1) the recentdevelopment of a new experimental model of NE-AMD induced by superior cervicalganglionectomy in C57BL/6J mice, 2) differences in the histology,ultrastructure, and metabolic attributes of the temporal (versus the nasal) retinalpigment epithelium, which could explain its particular susceptibility withinNE-AMD, and 3) the participation of retinal pigment epithelium oxidative damageand mitochondrial alterations in the pathogenic mechanisms of experimentalNE-AMD.Fil: Dieguez, Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Dorfman, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentin

    Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats.

    Get PDF
    Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm) optic nerve (ON) could be the first structural change of the visual pathway in streptozotocin (STZ)-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE) or remained in a standard environment (SE) for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity), microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1) immunoreactivity), astrocyte reactivity (glial fibrillary acid protein-immunostaining), myelin (myelin basic protein immunoreactivity), ultrastructure, and brain derived neurotrophic factor (BDNF) levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway

    A novel viewpoint in glaucoma therapeutics: enriched environment

    No full text
    Glaucoma is one of the world's most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons. Despite glaucoma's most accepted risk factor is increased intraocular pressure (IOP), the mechanisms behind the disease have not been fully elucidated. To date, IOP lowering remains the gold standard; however, glaucoma patients may still lose vision regardless of effective IOP management. Therefore, the exclusive IOP control apparently is not enough to stop the disease progression, and developing new resources to protect the retina and optic nerve against glaucoma is a goal of vast clinical importance. Besides pharmacological treatments, environmental conditions have been shown to prevent neurodegeneration in the central nervous system. In this review, we discuss current concepts on key pathogenic mechanisms involved in glaucoma, the effect of enriched environment on these mechanisms in different experimental models, as well as recent evidence supporting the preventive and therapeutic effect of enriched environment exposure against experimental glaucomatous damage. Finally, we postulate that stimulating vision may become a non-invasive and rehabilitative therapy that could be eventually translated to the human disease, preventing glaucoma-induced terrible sequelae resulting in permanent visual disability.Fil: González Fleitas, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Dorfman, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Rosenstein, Ruth Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentin

    Effect of Angeli's salt on the glutamate/glutamine cycle activity and on glutamate excitotoxicity in the hamster retina

    No full text
    Glutamate is the main excitatory neurotransmitter in the retina, but it is toxic when present in excessive amounts. It is well known that NO is involved in glutamate excitotoxicity, but information regarding the possibility that NO-related species could reciprocally affect glutamate synaptic levels was not previously provided. The dependence of glutamatergic neurons upon glia via the glutamate/glutamine cycle to provide the precursor for neurotransmitter glutamate is well established. The aim of the present work was to comparatively analyze the effect of nitroxyl and NO on the retinal glutamate/glutamine cycle in vitro activity. For this purpose, Angeli's salt (AS) and diethylamine NONOate (DEA/NO) were used as nitroxyl and NO donor, respectively. AS and DEA/NO significantly decreased retinal l-glutamate uptake and glutamine synthetase activity, but only AS decreased l-glutamine influx. Dithiothreitol prevented all the effects of AS and DEA/NO. The intravitreal injection of DEA/NO (but not AS) or a supraphysiological concentration of glutamate induced retinal histological alterations. Although AS could increase glutamate synaptic concentration in vitro, the histological alterations induced by glutamate were abrogated by AS. These results suggest that nitroxyl could regulate the hamster retinal glutamatergic pathway by acting through differential mechanisms at pre- and postsynaptic level.Fil: Knott, María Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Dorfman, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Chianelli, Mónica Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Saenz, Daniel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentin

    Experimental optic neuritis induced by the microinjection of lipopolysaccharide into the optic nerve

    Get PDF
    Optic neuritis (ON) is a condition involving primary inflammation, demyelination, and axonal injury in the optic nerve which leads to retinal ganglion cell (RGC) loss, and visual dysfunction. We investigated the ability of a single microinjection of bacterial lipopolysaccharide (LPS) directly into the optic nerve to induce functional and structural alterations compatible with ON. For this purpose, optic nerves from male Wistar rats remained intact or were injected with vehicle or LPS. The effect of LPS was evaluated at several time points post-injection in terms of: i) visual pathway and retinal function (visual evoked potentials (VEPs) and electroretinograms, (ERGs), respectively), ii) anterograde transport from the retina to its projection areas, iii) consensual pupil light reflex (PLR), iv) optic nerve histology, v) microglia/macrophage reactivity (by Iba-1- and ED1-immunostaining), vi) astrocyte reactivity (by glial fibrillary acid protein-immunostaining), vii) axon number (by toluidine blue staining), vii) demyelination (by myelin basic protein immunoreactivity and luxol fast blue staining), viii) optic nerve ultrastructure, and ix) RGC number (by Brn3a immunoreactivity). LPS induced a significant and persistent decrease in VEP amplitude and PLR, without changes in the ERG. In addition, LPS induced a deficit in anterograde transport, and an early inflammatory response consisting in an increased cellularity, and Iba-1 and ED1-immunoreactivity in the optic nerve, which were followed by changes in axonal density, astrocytosis, demyelination, and axon and RGC loss. These results suggest that the microinjection of LPS into the optic nerve may serve as a new experimental model of primary ON.Fil: Aranda, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquímica Retiniana y Oftalmología Experimental; ArgentinaFil: Sande, Pablo H.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquímica Retiniana y Oftalmología Experimental; ArgentinaFil: Dorfman, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquímica Retiniana y Oftalmología Experimental; ArgentinaFil: Rosenstein, Ruth Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquímica Retiniana y Oftalmología Experimental; Argentin

    Effect of retinal ischemia on the non-image forming visual system

    No full text
    Retinal ischemic injury is an important cause of visual impairment. The loss of retinal ganglion cells (RGCs) is a key sign of retinal ischemic damage. A subset of RGCs expressing the photopigment melanopsin (mRGCs) regulates non-image-forming visual functions such as the pupillary light reflex (PLR), and circadian rhythms. We studied the effect of retinal ischemia on mRGCs and the non-image-forming visual system function. For this purpose, transient ischemia was induced by raising intraocular pressure to 120 mm Hg for 40 min followed by retinal reperfusion by restoring normal pressure. At 4 weeks post-treatment, animals were subjected to electroretinography and histological analysis. Ischemia induced a significant retinal dysfunction and histological alterations. At this time point, a significant decrease in the number of Brn3a(+) RGCs and in the anterograde transport from the retina to the superior colliculus and lateral geniculate nucleus was observed, whereas no differences in the number of mRGCs, melanopsin levels, and retinal projections to the suprachiasmatic nuclei and the olivary pretectal nucleus were detected. At low light intensity, a decrease in pupil constriction was observed in intact eyes contralateral to ischemic eyes, whereas at high light intensity, retinal ischemia did not affect the consensual PLR. Animals with ischemia in both eyes showed a conserved locomotor activity rhythm and a photoentrainment rate which did not differ from control animals. These results suggest that the non-image forming visual system was protected against retinal ischemic damage.Fil: González Fleitas, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquimica Retiniana y Oftalmolog.exp.; ArgentinaFil: Bordone, Melina Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquimica Retiniana y Oftalmolog.exp.; ArgentinaFil: Rosenstein, Ruth Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquimica Retiniana y Oftalmolog.exp.; ArgentinaFil: Dorfman, Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquimica Retiniana y Oftalmolog.exp.; Argentin
    corecore