167 research outputs found

    Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) regulates inflammasomes

    Get PDF
    Background The apoptotic speck-like protein containing a caspase recruitment domain (ASC) is the essential adaptor protein for caspase 1 mediated interleukin (IL)-1β and IL-18 processing in inflammasomes. It bridges activated Nod like receptors (NLRs), which are a family of cytosolic pattern recognition receptors of the innate immune system, with caspase 1, resulting in caspase 1 activation and subsequent processing of caspase 1 substrates. Hence, macrophages from ASC deficient mice are impaired in their ability to produce bioactive IL-1β. Furthermore, we recently showed that ASC translocates from the nucleus to the cytosol in response to inflammatory stimulation in order to promote an inflammasome response, which triggers IL-1β processing and secretion. However, the precise regulation of inflammasomes at the level of ASC is still not completely understood. In this study we identified and characterized three novel ASC isoforms for their ability to function as an inflammasome adaptor. Methods To establish the ability of ASC and ASC isoforms as functional inflammasome adaptors, IL-1β processing and secretion was investigated by ELISA in inflammasome reconstitution assays, stable expression in THP-1 and J774A1 cells, and by restoring the lack of endogenous ASC in mouse RAW264.7 macrophages. In addition, the localization of ASC and ASC isoforms was determined by immunofluorescence staining. Results The three novel ASC isoforms, ASC-b, ASC-c and ASC-d display unique and distinct capabilities to each other and to full length ASC in respect to their function as an inflammasome adaptor, with one of the isoforms even showing an inhibitory effect. Consistently, only the activating isoforms of ASC, ASC and ASC-b, co-localized with NLRP3 and caspase 1, while the inhibitory isoform ASC-c, co-localized only with caspase 1, but not with NLRP3. ASC-d did not co-localize with NLRP3 or with caspase 1 and consistently lacked the ability to function as an inflammasome adaptor and its precise function and relation to ASC will need further investigation. Conclusions Alternative splicing and potentially other editing mechanisms generate ASC isoforms with distinct abilities to function as inflammasome adaptor, which is potentially utilized to regulate inflammasomes during the inflammatory host response

    The PAAD/PYRIN-Family Protein ASC Is a Dual Regulator of a Conserved Step in Nuclear Factor κB Activation Pathways

    Get PDF
    Apoptosis-associated speck-like protein containing a Caspase recruitment domain (ASC) belongs to a large family of proteins that contain a Pyrin, AIM, ASC, and death domain-like (PAAD) domain (also known as PYRIN, DAPIN, Pyk). Recent data have suggested that ASC functions as an adaptor protein linking various PAAD-family proteins to pathways involved in nuclear factor (NF)-κB and pro-Caspase-1 activation. We present evidence here that the role of ASC in modulating NF-κB activation pathways is much broader than previously suspected, as it can either inhibit or activate NF-κB, depending on cellular context. While coexpression of ASC with certain PAAD-family proteins such as Pyrin and Cryopyrin increases NF-κB activity, ASC has an inhibitory influence on NF-κB activation by various proinflammatory stimuli, including tumor necrosis factor (TNF)α, interleukin 1β, and lipopolysaccharide (LPS). Elevations in ASC protein levels or of the PAAD domain of ASC suppressed activation of IκB kinases in cells exposed to pro-inflammatory stimuli. Conversely, reducing endogenous levels of ASC using siRNA enhanced TNF- and LPS-induced degradation of the IKK substrate, IκBα. Our findings suggest that ASC modulates diverse NF-κB induction pathways by acting upon the IKK complex, implying a broad role for this and similar proteins containing PAAD domains in regulation of inflammatory responses

    The PYRIN Domain-only Protein POP1 Inhibits Inflammasome Assembly and Ameliorates Inflammatory Disease

    Get PDF
    SummaryIn response to infections and tissue damage, ASC-containing inflammasome protein complexes are assembled that promote caspase-1 activation, IL-1β and IL-18 processing and release, pyroptosis, and the release of ASC particles. However, excessive or persistent activation of the inflammasome causes inflammatory diseases. Therefore, a well-balanced inflammasome response is crucial for the maintenance of homeostasis. We show that the PYD-only protein POP1 inhibited ASC-dependent inflammasome assembly by preventing inflammasome nucleation, and consequently interfered with caspase-1 activation, IL-1β and IL-18 release, pyroptosis, and the release of ASC particles. There is no mouse ortholog for POP1, but transgenic expression of human POP1 in monocytes, macrophages, and dendritic cells protected mice from systemic inflammation triggered by molecular PAMPs, inflammasome component NLRP3 mutation, and ASC danger particles. POP1 expression was regulated by TLR and IL-1R signaling, and we propose that POP1 provides a regulatory feedback loop that shuts down excessive inflammatory responses and thereby prevents systemic inflammation

    Recent evolution of the NF-κB and inflammasome regulating protein POP2 in primates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyrin-only protein 2 (POP2) is a small human protein comprised solely of a pyrin domain that inhibits NF-κB p65/RelA and blocks the formation of functional IL-1β processing inflammasomes. Pyrin proteins are abundant in mammals and several, like POP2, have been linked to activation or regulation of inflammatory processes. Because <it>POP2 </it>knockout mice would help probe the biological role of inflammatory regulation, we thus considered whether <it>POP2 </it>is common in the mammalian lineage.</p> <p>Results</p> <p>BLAST searches revealed that <it>POP2 </it>is absent from the available genomes of not only mice and rats, but those of other domestic mammals and New World monkeys as well. <it>POP2 </it>is however present in the genome of the primate species most closely related to humans including <it>Pan troglodytes </it>(chimpanzees), <it>Macaca mulatta </it>(rhesus macaques) and others. Interestingly, chimpanzee POP2 is identical to human POP2 (huPOP2) at both the DNA and protein level. Macaque POP2 (mqPOP2), although highly conserved is not identical to the human sequence; however, both functions of the human protein are retained. Further, <it>POP2 </it>appears to have arisen in the mammalian genome relatively recently (~25 mya) and likely derived from retrogene insertion of <it>NLRP2</it>.</p> <p>Conclusion</p> <p>Our findings support the hypothesis that the NLR loci of mammals, encoding proteins involved in innate and adaptive immunity as well as mammalian development, have been subject to recent and strong selective pressures. Since POP2 is capable of regulating signaling events and processes linked to innate immunity and inflammation, its presence in the genomes of hominids and Old World primates further suggests that additional regulation of these signals is important in these species.</p

    Co-Regulation of NF-κB and Inflammasome-Mediated Inflammatory Responses by Myxoma Virus Pyrin Domain-Containing Protein M013

    Get PDF
    NF-κB and inflammasomes both play central roles in orchestrating anti-pathogen responses by rapidly inducing a variety of early-response cytokines and chemokines following infection. Myxoma virus (MYXV), a pathogenic poxvirus of rabbits, encodes a member of the cellular pyrin domain (PYD) superfamily, called M013. The viral M013 protein was previously shown to bind host ASC-1 protein and inhibit the cellular inflammasome complex that regulates the activation and secretion of caspase 1-regulated cytokines such as IL-1β and IL-18. Here, we report that human THP-1 monocytic cells infected with a MYXV construct deleted for the M013L gene (vMyxM013-KO), in stark contrast to the parental MYXV, rapidly induce high levels of secreted pro-inflammatory cytokines like TNF, IL-6, and MCP-1, all of which are regulated by NF-κB. The induction of these NF-κB regulated cytokines following infection with vMyxM013-KO was also confirmed in vivo using THP-1 derived xenografts in NOD-SCID mice. vMyxM013-KO virus infection specifically induced the rapid phosphorylation of IKK and degradation of IκBα, which was followed by nuclear translocation of NF-κB/p65. Even in the absence of virus infection, transiently expressed M013 protein alone inhibited cellular NF-κB-mediated reporter gene expression and nuclear translocation of NF-κB/p65. Using protein/protein interaction analysis, we show that M013 protein also binds directly with cellular NF-κB1, suggesting a direct physical and functional linkage between NF-κB1 and ASC-1. We further demonstrate that inhibition of the inflammasome with a caspase-1 inhibitor did not prevent the induction of NF-κB regulated cytokines following infection with vMyxM013-KO virus, but did block the activation of IL-1β. Thus, the poxviral M013 inhibitor exerts a dual immuno-subversive role in the simultaneous co-regulation of both the cellular inflammasome complex and NF-κB-mediated pro-inflammatory responses

    Tissue factor/FVIIa activates Bcl-2 and prevents doxorubicin-induced apoptosis in neuroblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tissue factor (TF) is a transmembrane protein that acts as a receptor for activated coagulation factor VII (FVIIa), initiating the coagulation cascade. Recent studies demonstrate that expression of tumor-derived TF also mediates intracellular signaling relevant to tumor growth and apoptosis. Our present study investigates the possible mechanism by which the interaction between TF and FVIIa regulates chemotherapy resistance in neuroblastoma cell lines.</p> <p>Methods</p> <p>Gene and siRNA transfection was used to enforce TF expression in a TF-negative neuroblastoma cell line and to silence endogenous TF expression in a TF-overexpressing neuroblastoma line, respectively. The expression of TF, Bcl-2, STAT5, and Akt as well as the phosphorylation of STAT5 and Akt in gene transfected cells or cells treated with JAK inhibitor and LY294002 were determined by Western blot assay. Tumor cell growth was determined by a clonogenic assay. Cytotoxic and apoptotic effect of doxorubicin on neuroblastoma cell lines was analyzed by WST assay and annexin-V staining (by flow cytometry) respectively.</p> <p>Results</p> <p>Enforced expression of TF in a TF-negative neuroblastoma cell line in the presence of FVIIa induced upregulation of Bcl-2, leading to resistance to doxorubicin. Conversely, inhibition of endogenous TF expression in a TF-overexpressing neuroblastoma cell line using siRNA resulted in down-regulation of Bcl-2 and sensitization to doxorubicin-induced apoptosis. Additionally, neuroblastoma cells expressing high levels of either endogenous or transfected TF treated with FVIIa readily phosphorylated STAT5 and Akt. Using selective pharmacologic inhibitors, we demonstrated that JAK inhibitor I, but not the PI3K inhibitor LY294002, blocked the TF/FVIIa-induced upregulation of Bcl-2.</p> <p>Conclusion</p> <p>This study shows that in neuroblastoma cell lines overexpressed TF ligated with FVIIa produced upregulation of Bcl-2 expression through the JAK/STAT5 signaling pathway, resulting in resistance to apoptosis. We surmise that this TF-FVIIa pathway may contribute, at least in part, to chemotherapy resistance in neuroblastoma.</p

    Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism

    Get PDF
    Inflammasomes are cytosolic caspase-1-activation complexes that sense intrinsic and extrinsic danger signals, and trigger inflammatory responses and pyroptotic cell death. Homotypic interactions among Pyrin domains and caspase recruitment domains (CARDs) in inflammasome-complex components mediate oligomerization into filamentous assemblies. Several cytosolic proteins consisting of only interaction domains exert inhibitory effects on inflammasome assembly. In this study, we determined the structure of the human caspase-1 CARD domain (caspase-1[superscript CARD]) filament by cryo-electron microscopy and investigated the biophysical properties of two caspase-1-like CARD-only proteins: human inhibitor of CARD (INCA or CARD17) and ICEBERG (CARD18). Our results reveal that INCA caps caspase-1 filaments, thereby exerting potent inhibition with low-nanomolar K[subscript i] on caspase-1[superscript CARD] polymerization in vitro and inflammasome activation in cells. Whereas caspase-1[superscript CARD] uses six complementary surfaces of three types for filament assembly, INCA is defective in two of the six interfaces and thus terminates the caspase-1 filament

    Innate Immune Sensing of Modified Vaccinia Virus Ankara (MVA) Is Mediated by TLR2-TLR6, MDA-5 and the NALP3 Inflammasome

    Get PDF
    Modified vaccinia virus Ankara (MVA) is an attenuated double-stranded DNA poxvirus currently developed as a vaccine vector against HIV/AIDS. Profiling of the innate immune responses induced by MVA is essential for the design of vaccine vectors and for anticipating potential adverse interactions between naturally acquired and vaccine-induced immune responses. Here we report on innate immune sensing of MVA and cytokine responses in human THP-1 cells, primary human macrophages and mouse bone marrow-derived macrophages (BMDMs). The innate immune responses elicited by MVA in human macrophages were characterized by a robust chemokine production and a fairly weak pro-inflammatory cytokine response. Analyses of the cytokine production profile of macrophages isolated from knockout mice deficient in Toll-like receptors (TLRs) or in the adapter molecules MyD88 and TRIF revealed a critical role for TLR2, TLR6 and MyD88 in the production of IFNβ-independent chemokines. MVA induced a marked up-regulation of the expression of RIG-I like receptors (RLR) and the IPS-1 adapter (also known as Cardif, MAVS or VISA). Reduced expression of RIG-I, MDA-5 and IPS-1 by shRNAs indicated that sensing of MVA by RLR and production of IFNβ and IFNβ-dependent chemokines was controlled by the MDA-5 and IPS-1 pathway in the macrophage. Crosstalk between TLR2-MyD88 and the NALP3 inflammasome was essential for expression and processing of IL-1β. Transcription of the Il1b gene was markedly impaired in TLR2−/− and MyD88−/− BMDM, whereas mature and secreted IL-1β was massively reduced in NALP3−/− BMDMs or in human THP-1 macrophages with reduced expression of NALP3, ASC or caspase-1 by shRNAs. Innate immune sensing of MVA and production of chemokines, IFNβ and IL-1β by macrophages is mediated by the TLR2-TLR6-MyD88, MDA-5-IPS-1 and NALP3 inflammasome pathways. Delineation of the host response induced by MVA is critical for improving our understanding of poxvirus antiviral escape mechanisms and for designing new MVA vaccine vectors with improved immunogenicity

    Is the inflammasome a potential therapeutic target in renal disease?

    Get PDF
    The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of pro-inflammatory cytokines IL-1β and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases. The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia, glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/ IL-18 axis may also be responsible for development of CKD itself and its related complications, including vascular calcification and sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive potential therapeutic target in a variety of renal diseases
    corecore