16 research outputs found

    Inelastic H and D atom scattering from Au(111) as benchmark for theory.

    No full text
    Efficient transfer of translational energy to electron-hole pair excitation involving multiple collisions dominates H atom collisions with metal surfaces. For this reason, H atom interaction with metal surfaces cannot be modeled within the commonly used Born-Oppenheimer approximation (BOA). This fact makes H atom scattering from metal surfaces an ideal model system for dynamics that go beyond the BOA. We chose the H/Au(111) system as a model system to obtain a detailed dataset that can serve as a benchmark for theoretical models developed for describing electronically nonadiabatic processes at metal surfaces. Therefore, we investigate the influence of various experimental parameters on the energy loss in detail including isotopic variant, incidence translational energy, incidence polar and azimuthal angles, and outgoing scattering angles

    Inelastic H-Atom scattering from ultra-thin films.

    No full text

    An ultrahigh vacuum apparatus for H atom scattering from surfaces.

    No full text
    We present an apparatus to study inelastic H or D atom scattering from surfaces under ultra-high vacuum conditions. The apparatus provides high resolution information on scattering energy and angular distributions by combining a photolysis-based atom source with Rydberg atom tagging time-of-flight. Using hydrogen halides as precursors, H and D atom beams can be formed with energies from 500 meV up to 7 eV, with an energy spread of down to 2 meV and an intensity of up to 10(8) atoms per pulse. A six-axis manipulator holds the sample and allows variation of both polar and azimuthal incidence angles. Surface temperature can be varied from 45 K up to 1500 K. The apparatus' energy resolution (E/Delta F) can be as high as 1000 and its angular resolution can be adjusted between 0.3 degrees and 3 degrees

    Inelastic H atom scattering from ultrathin aluminum oxide films grown by atomic layer deposition on Pt(111)

    No full text
    Electronic and phonon spectra of thin films can be tailored by film thickness. These properties may influence energy exchange processes between the surfaces of such films and atoms or molecules. Therefore, thin films of different thicknesses and compositions have the potential to allow control over the energy transfer processes between surfaces and atoms and molecules. Atomic layer deposition was used to synthesize thin films of aluminum oxide on platinum. The films were investigated using inelastic H atom scattering and compared to single crystalline aluminum oxide and platinum crystals. The single crystals behave very differently to each other. However, single crystalline aluminum oxide and thin films of aluminum oxide grown on platinum behave nearly identically even down to the thinnest possible closed film of 1 nm. The results for alumina can be explained within a simple hard cube model. Samples with a not fully closed monolayer of aluminum oxide on platinum show two components in the energy loss spectrum of scattered H atoms: one component corresponds to scattering from the oxide layer and the second to scattering from the underlying platinum. No synergy or thickness dependent effects are observed

    Unified description of H-atom-induced chemicurrents and inelastic scattering.

    No full text
    The Born-Oppenheimer approximation (BOA) provides the foundation for virtually all computational studies of chemical binding and reactivity, and it is the justification for the widely used "balls and springs" picture of molecules. The BOA assumes that nuclei effectively stand still on the timescale of electronic motion, due to their large masses relative to electrons. This implies electrons never change their energy quantum state. When molecules react, atoms must move, meaning that electrons may become excited in violation of the BOA. Such electronic excitation is clearly seen for: (i) Schottky diodes where H adsorption at Ag surfaces produces electrical "chemicurrent;" (ii) Au-based metal-insulator-metal (MIM) devices, where chemicurrents arise from H-H surface recombination; and (iii) Inelastic energy transfer, where H collisions with Au surfaces show H-atom translation excites the metal's electrons. As part of this work, we report isotopically selective hydrogen/deuterium (H/D) translational inelasticity measurements in collisions with Ag and Au. Together, these experiments provide an opportunity to test new theories that simultaneously describe both nuclear and electronic motion, a standing challenge to the field. Here, we show results of a recently developed first-principles theory that quantitatively explains both inelastic scattering experiments that probe nuclear motion and chemicurrent experiments that probe electronic excitation. The theory explains the magnitude of chemicurrents on Ag Schottky diodes and resolves an apparent paradox--chemicurrents exhibit a much larger isotope effect than does H/D inelastic scattering. It also explains why, unlike Ag-based Schottky diodes, Au-based MIM devices are insensitive to H adsorption

    Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption.

    No full text
    How much translational energy atoms and molecules lose in collisions at surfaces determines whether they adsorb or scatter. The fact that hydrogen (H) atoms stick to metal surfaces poses a basic question. Momentum and energy conservation demands that the light H atom cannot efficiently transfer its energy to the heavier atoms of the solid in a binary collision. How then do H atoms efficiently stick to metal surfaces? We show through experiments that H-atom collisions at an insulating surface (an adsorbed xenon layer on a gold single-crystal surface) are indeed nearly elastic, following the predictions of energy and momentum conservation. In contrast, H-atom collisions with the bare gold surface exhibit a large loss of translational energy that can be reproduced by an atomic-level simulation describing electron-hole pair excitation

    Adsorbate modification of electronic nonadiabaticity: H atom scattering from p(2 × 2) O on Pt(111)

    No full text
    We report inelastic differential scattering experiments for energetic H and D atoms colliding at a Pt(111) surface with and without adsorbed O atoms. Dramatically, more energy loss is seen for scattering from the Pt(111) surface compared to p(2 × 2) O on Pt(111), indicating that O adsorption reduces the probability of electron–hole pair (EHP) excitation. We produced a new full-dimensional potential energy surface for H interaction with O/Pt that reproduces density functional theory energies accurately. We then attempted to model the EHP excitation in H/D scattering with molecular dynamics simulations employing the electronic density information from the Pt(111) to calculate electronic friction at the level of the local density friction approximation (LDFA). This approach, which assumes that O atoms simply block the Pt atom from the approaching H atom, fails to reproduce experiment due to the fact that the effective collision cross section of the O atom is only 10% of the area of the surface unit cell. An empirical adiabatic sphere model that reduces electronic nonadiabaticity within an O–Pt bonding length scale of 2.8 Å reproduces experiment well, suggesting that the electronic structure changes induced by chemisorption of O atoms nearly remove the H atom’s ability to excite EHPs in the Pt. Alternatives to LDFA friction are needed to account for this adsorbate effect

    Trained immunity as a novel approach against COVID-19 with a focus on Bacillus Calmette-Guérin vaccine: mechanisms, challenges and perspectives

    No full text
    Contains fulltext : 229527.pdf (publisher's version ) (Open Access)COVID-19 is a severe health problem in many countries and has altered day-to-day life in the whole world. This infection is caused by the SARS-CoV-2 virus, and depending on age, sex and health status of the patient, it can present with variety of clinical symptoms such as mild infection, a very severe form or even asymptomatic course of the disease. Similarly to other viruses, innate immune response plays a vital role in protection against COVID-19. However, dysregulation of innate immunity could have a significant influence on the severity of the disease. Despite various efforts, there is no effective vaccine against the disease so far. Recent data have demonstrated that the Bacillus Calmette-Guérin (BCG) vaccine could reduce disease severity and the burden of several infectious diseases in addition to targeting its primary focus tuberculosis. There is growing evidence for the concept of beneficial non-specific boosting of immune responses by BCG or other microbial compounds termed trained immunity, which may protect against COVID-19. In this manuscript, we review data on how the development of innate immune memory due to microbial compounds specifically BCG can result in protection against SARS-CoV-2 infection. We also discuss possible mechanisms, challenges and perspectives of using innate immunity as an approach to reduce COVID-19 severity

    Imaging covalent bond formation by H atom scattering from graphene.

    Get PDF
    Viewing the atomic-scale motion and energy dissipation pathways involved in forming a covalent bond is a longstanding challenge for chemistry. We performed scattering experiments of H atoms from graphene and observed a bimodal translational energy loss distribution. Using accurate first-principles dynamics simulations, we show that the quasi-elastic channel involves scattering through the physisorption well where collision sites are near the centers of the six-membered C-rings. The second channel results from transient C-H bond formation, where H atoms lose 1 to 2 electron volts of energy within a 10-femtosecond interaction time. This remarkably rapid form of intramolecular vibrational relaxation results from the C atom's rehybridization during bond formation and is responsible for an unexpectedly high sticking probability of H on graphene
    corecore