3,655 research outputs found

    Characterisation of porous solids using small-angle scattering and NMR cryoporometry

    Get PDF
    The characteristics of several porous systems have been studied by the use of small-angle neutron scattering [SANS] and nuclear magnetic resonance [NMR] techniques. The measurements reveal different characteristics for sol-gel silicas, activated carbons and ordered mesoporous silicas of the MCM and SBA type. Good agreement is obtained between gas adsorption measurements and the NMR and SANS results for pore sizes above 10 nm. Recent measurements of the water/ice phase transformation in SBA silicas by neutron diffraction are also presented and indicate a complex relationship that will require more detailed treatment in terms of the possible effects of microporosity in the silica substrate. The complementarity of the different methods is emphasised and there is brief discussion of issues related to possible future developments

    Raman spectroscopy study of the interface structure in (CaCuO2)n/(SrTiO3)m superlattices

    Full text link
    Raman spectra of CaCuO2/SrTiO3 superlattices show clear spectroscopic marker of two structures formed in CaCuO2 at the interface with SrTiO3. For non-superconducting superlattices, grown in low oxidizing atmosphere, the 425 cm-1 frequency of oxygen vibration in CuO2 planes is the same as for CCO films with infinite layer structure (planar Cu-O coordination). For superconducting superlattices grown in highly oxidizing atmosphere, a 60 cm-1 frequency shift to lower energy occurs. This is ascribed to a change from planar to pyramidal Cu-O coordination because of oxygen incorporation at the interface. Raman spectroscopy proves to be a powerful tool for interface structure investigation

    Velikhov Electrothermal Instability Cancellation by a Modification of Electrical Conductivity Value in a Streamer by Magnetic Confinement

    Get PDF
    We present a method, confirmed experimentally, allowing the cancellation of Velikhov instability by operating a local magnetic field reduction along a lane, which enhances local electric conductivity and electron-gas collision frequency, due to a local passage into a Coulomb collision regime and the subsequent lowering of the Hall parameter below its critical value, close to 2

    Molecular ions in L1544. I. Kinematics

    Get PDF
    We have mapped the dense dark core L1544 in H13CO+(1-0), DCO+(2-1), DCO+(3-2), N2H+(1-0), NTH+(3-2), N2D+(2-1), N2D+(3-2), C18O(1-0), and C17O(1-0) using the IRAM 30-m telescope. We have obtained supplementary observations of HC18O+(1-0), HC17O+(1-0), and D13CO+(2-1). Many of the observed maps show a general correlation with the distribution of dust continuum emission in contrast to C18O(1-0) and C17O(1-0) which give clear evidence for depletion of CO at positions close to the continuum peak. In particular N2D+(2-1) and (3-2) and to a lesser extent N2H+(1-0) appear to be excellent tracers of the dust continuum. We find that the tracers of high density gas (in particular N2D+) show a velocity gradient along the minor axis of the L1544 core and that there is evidence for larger linewidths close to the dust emission peak. We interpret this using the model of the L1544 proposed by Ciolek & Basu (2000) and by comparing the observed velocities with those expected on the basis of their model. The results show reasonable agreement between observations and model in that the velocity gradient along the minor axis and the line broadening toward the center of L1544 are predicted by the model. This is evidence in favour of the idea that amipolar diffusion across field lines is one of the basic processes leading to gravitational collapse. However, line widths are significantly narrower than observed and are better reproduced by the Myers & Zweibel (2001) model which considers the quasistatic vertical contraction of a layer due to dissipation of its Alfvenic turbulence, indicating the importance of this process for cores in the verge of forming a star.Comment: 24 pages, 9 figures, to be published in Ap

    Genetic Modification of Stem Cells in Diabetes and Obesity

    Get PDF
    Genetic modification, or gene transfer, represents a method of treatment for several diseases. It has been used extensively in the context of cardiovascular diseases; however, its role in the context of metabolic diseases, such as diabetes and obesity, has remained largely unexplored. In this chapter, we will review the use of adult stem cells, focusing on endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs), in the context of diabetes. We have highlighted the use of viral vectors, particularly DNA viruses, as a tool for genetic modification to help stem cells survive and resist apoptosis in a hyperglycemic environment. We then discuss genetic modification of EPCs and MSCs to treat complications of diabetes and obesity. Although there are several unanswered questions in the field of metabolic diseases, the future application of gene transfer technology along with genetic modification of stem cells prior to the therapy holds significant therapeutic promise

    List of Expenditures for Farm Labor Project 1943

    Full text link
    A list of expenditures made in connection with the Brooklyn College Farm Labor Project, 1943, sent from Clerical Assistant, Marie C. Dore, to Mr. J. Harvey Cain (Board of Higher Education). February 23, 1944

    Understanding Emissions of Ammonia from Buildings and Application of Fertilizers: An Example from Poland

    Get PDF
    A Europe-wide dynamic ammonia (NH3) emissions model has been applied for one of the large agricultural countries in Europe, and its sensitivity on the distribution of emissions among different agricultural functions was analyzed by comparing with observed ammonia concentrations and by implementing all scenarios in a CTM model. The results suggest that the dynamic emission model is most sensitive to emission from animal manure, in particular how this is connected to national regulations. In contrast, the model is most robust with respect to emission from buildings and storage. To do this, we obtained activity information on agricultural operations at the sub-national level for Poland, information about infrastructure on storages and current regulations on manure practice from Polish authorities. The information was implemented in the existing emission model and was connected directly with the NWP calculations from the Weather Research and Forecasting model (WRF-ARW). The model was used to calculate four emission scenarios with high spatial (5 km x 5 km) and temporal resolution (3h) for the entire year 2010. In the four scenarios, we have compared the European-wide default model settings against: 1) a scenario that focuses on emission from agricultural buildings, 2) the existing emission method used in WRF-Chem in Poland, and 3) a scenario that takes into account Polish infrastructure and agricultural regulations. The ammonia emission was implemented into the chemical transport model FRAME and modelled ammonia concentrations was compared with measurements. The results suggest that the default setting in the dynamic model is an improvement compared to a non-dynamical emission profile. The results also show that further improvements can be obtained on the national scale by replacing the default information on manure practice with information that is connected with local practice and national regulations. Implementing a dynamical approach for simulation of ammonia emission is a viable objective for all CTM models that continue to use fixed emission profiles. Such models should handle ammonia emissions in a similar way to other climate dependent emissions (e.g. Biogenic Volatile Organic Compounds). Our results, compared with previous results from the DEHM and the GEOS-CHEM models, suggest that implementing dynamical approaches improves simulations in general even in areas with limited information about location of the agricultural fields, livestock and agricultural production methods such as Poland

    High Potency and Other Alcoholic Beverage Consumption Among Adolescents

    Get PDF
    This study examined the prevalence of high potency (liquor, malt liquor, fortified wine) and other alcoholic beverage consumption (beer, wine/wine coolers) among adolescents, the impact of gender and ethnicity, and the risk and protective factors that predicted consumption. A confidential survey revealed that, among eighth grade students, wine/wine coolers were the most popular alcoholic beverages, with the highest levels of lifetime use, and the greatest current frequency and quantity of use, followed closely by beer and liquor. Minor gender differences were found, as well as notable ethnic differences, in consumption. Intentions and attitudes were important predictors of use across beverages. Different factors may need to be targeted depending upon the type of beverage that is addressed in future prevention programs
    corecore