4,581 research outputs found

    An Infrared study of the Josephson vortex state in high-Tc cuprates

    Full text link
    We report the results of the c-axis infrared spectroscopy of La_{2-x} Sr_x CuO_4 in high magnetic field oriented parallel to the CuO_2 planes. A significant suppression of the superfluid density with magnetic field rho_s(H) is observed for both underdoped (x=0.125) and overdoped (x=0.17) samples. We show that the existing theoretical models of the Josephson vortex state fail to consistently describe the observed effects and discuss possible reasons for the discrepancies

    Analysis and Comparison of Peak-to-Peak Current Ripple in Two-Level and Multilevel PWM Inverters

    Get PDF
    Three-phase multilevel inverters are used in many medium- and high-power applications such as motor drives and grid-connected systems. Despite numerous PWM techniques for multilevel inverters have been developed, the impact of these modulation schemes on the peak-to-peak output current ripple amplitude has not been addressed yet. In this paper the analysis and the comparison of current ripple for two- and three-level voltage source inverters are given. Reference is made to optimal and popular modulation, so-called centered PWM, easily obtained by both carrier-based modulation (phase disposition, with proper common-mode voltage injection) and space vector modulation (nearest three vectors). It is shown that the peak-to-peak current ripple amplitude in three-level inverters can be determined on the basis of the ripple in two-level inverters, obtaining the same re-sults as by directly analyzing the output voltage waveforms of the three-level inverters. This procedure can be readily extended to higher level numbers. The proposed analytical developments are verified by both numerical simulations and experimental tests

    Charge order, metallic behavior and superconductivity in La_{2-x}Ba_xCuO_4 with x=1/8

    Full text link
    The ab-plane optical properties of a cleaved single crystal of La_{2-x}Ba_xCuO_4 for x=1/8 (T_c ~ 2.4 K) have been measured over a wide frequency and temperature range. The low-frequency conductivity is Drude-like and shows a metallic response with decreasing temperature. However, below ~ 60 K, corresponding to the onset of charge-stripe order, there is a rapid loss of spectral weight below about 40 meV. The gapping of single-particle excitations looks surprisingly similar to that observed in superconducting La_{2-x}Sr_{x}CuO_4, including the presence of a residual Drude peak with reduced weight; the main difference is that the lost spectral weight moves to high, rather than zero, frequency, reflecting the absence of a bulk superconducting condensate.Comment: 4 pages, with 1 table and 3 figure

    Heavy fermion fluid in high magnetic fields: an infrared study of CeRu4_4Sb12_{12}

    Full text link
    We report a comprehensive infrared magneto-spectroscopy study of CeRu4_4Sb12_{12} compound revealing quasiparticles with heavy effective mass m^*, with a detailed analysis of optical constants in fields up to 17 T. We find that the applied magnetic field strongly affects the low energy excitations in the system. In particular, the magnitude of m^* \simeq 70 mb_b (mb_b is the quasiparticle band mass) at 10 K is suppressed by as much as 25 % at 17 T. This effect is in quantitative agreement with the mean-field solution of the periodic Anderson model augmented with a Zeeman term

    Pressure-tuning of the c-f hybridization in Yb metal detected by infrared spectroscopy up to 18 GPa

    Full text link
    It has been known that the elemental Yb, a divalent metal at mbient pressure, becomes a mixed-valent metal under external pressure, with its valence reaching ~2.6 at 30 GPa. In this work, infrared spectroscopy has been used to probe the evolution of microscopic electronic states associated with the valence crossover in Yb at external pressures up to 18 GPa. The measured infrared reflectivity spectrum R(w) of Yb has shown large variations with pressure. In particular, R(w) develops a deep minimum in the mid-infrared, which shifts to lower energy with increasing pressure. The dip is attributed to optical absorption due to a conduction c-f electron hybridization state, similarly to those previously observed for heavy fermion compounds. The red shift of the dip indicates that the cc-ff hybridization decreases with pressure, which is consistent with the increase of valence.Comment: 2 pages, to appear in J. Phys. Soc. Jpn. Supp

    Strong-coupling Effects in cuprate High-TcT_{c} Superconductors by magnetooptical studies

    Full text link
    Signatures of strong coupling effects in cuprate high-TcT_{c} superconductors have been authenticated through a variety of spectroscopic probes. However, the microscopic nature of relevant excitations has not been agreed upon. Here we report on magneto-optical studies of the CuO2_{2} plane carrier dynamics in a prototypical high-TcT_{c} superconductor YBa%_{2} Cu3_{3}Oy_{y} (YBCO). Infrared data are directly compared with earlier inelastic neutron scattering results by Dai \textit{et al}. [Nature (London) \textbf{406}, 965 (2000)] revealing a characteristic depression of the magnetic resonance in H \parallel \textit{c} field less than 7 T. This analysis has allowed us to critically assess the role of magnetic degrees of freedom in producing strong coupling effects for YBCO system.Comment: 4 pages, two figure

    Electronic Structure and Charge Dynamics of Huesler Alloy Fe2TiSn Probed by Infrared and Optical Spectroscopy

    Full text link
    We report on the electrodynamics of a Heusler alloy Fe2TiSn probed over four decades in energy: from the far infrared to the ultraviolet. Our results do not support the suggestion of Kondo-lattice behavior inferred from specific heat measurements. Instead, we find a conventional Drude-like response of free carriers, with two additional absorption bands centered at around 0.1 and 0.87 eV. The latter feature can be interpreted as excitations across a pseudogap, in accord with band structure calculations.Comment: 3 pages, 4 figure

    Scaling of the superfluid density in high-temperature superconductors

    Full text link
    A scaling relation \rho_s \simeq 35\sigma_{dc}T_c has been observed in the copper-oxide superconductors, where \rho_s is the strength of the superconducting condensate, T_c is the critical temperature, and \sigma_{dc} is the normal-state dc conductivity close to T_c. This scaling relation is examined within the context of a clean and dirty-limit BCS superconductor. These limits are well established for an isotropic BCS gap 2\Delta and a normal-state scattering rate 1/\tau; in the clean limit 1/\tau \ll 2\Delta, and in the dirty limit 1/\tau > 2\Delta. The dirty limit may also be defined operationally as the regime where \rho_s varies with 1/\tau. It is shown that the scaling relation \rho_s \propto \sigma_{dc}T_c is the hallmark of a BCS system in the dirty-limit. While the gap in the copper-oxide superconductors is considered to be d-wave with nodes and a gap maximum \Delta_0, if 1/\tau > 2\Delta_0 then the dirty-limit case is preserved. The scaling relation implies that the copper-oxide superconductors are likely to be in the dirty limit, and that as a result the energy scale associated with the formation of the condensate is scaling linearly with T_c. The a-b planes and the c axis also follow the same scaling relation. It is observed that the scaling behavior for the dirty limit and the Josephson effect (assuming a BCS formalism) are essentially identical, suggesting that in some regime these two effects may be viewed as equivalent. This raises the possibility that electronic inhomogeneities in the copper-oxygen planes may play an important role in the nature of the superconductivity in the copper-oxide materials.Comment: 8 pages with 5 figures and 1 tabl
    corecore