3,471 research outputs found

    A Superfield for Every Dash-Chromotopology

    Full text link
    The recent classification scheme of so-called adinkraic off-shell supermultiplets of N-extended worldline supersymmetry without central charges finds a combinatorial explosion. Completing our earlier efforts, we now complete the constructive proof that all of these trillions or more of supermultiplets have a superfield representation. While different as superfields and supermultiplets, these are still super-differentially related to a much more modest number of minimal supermultiplets, which we construct herein.Comment: 13 pages, integrated illustration

    Energy-dependent quenching adjusts the excitation diffusion length to regulate photosynthetic light harvesting

    Full text link
    An important determinant of crop yields is the regulation of photosystem II (PSII) light harvesting by energy-dependent quenching (qE). However, the molecular details of excitation quenching have not been quantitatively connected to the PSII yield, which only emerges on the 100 nm scale of the grana membrane and determines flux to downstream metabolism. Here, we incorporate excitation dissipation by qE into a pigment-scale model of excitation transfer and trapping for a 200 nm x 200 nm patch of the grana membrane. We demonstrate that single molecule measurements of qE are consistent with a weak-quenching regime. Consequently, excitation transport can be rigorously coarse-grained to a 2D random walk with an excitation diffusion length determined by the extent of quenching. A diffusion-corrected lake model substantially improves the PSII yield determined from variable chlorophyll fluorescence measurements and offers an improved model of PSII for photosynthetic metabolism.Comment: 19 pages, 4 figures, 3 supplementary figure

    Aberration of the Cosmic Microwave Background

    Full text link
    The motion of the solar system barycenter with respect to the cosmic microwave background (CMB) induces a very large apparent dipole component into the CMB brightness map at the 3 mK level. In this Letter we discuss another kinematic effect of our motion through the CMB: the small shift in apparent angular positions due to the aberration of light. The aberration angles are only of order beta ~0.001, but this leads to a potentially measurable compression (expansion) of the spatial scale in the hemisphere toward (away from) our motion through the CMB. In turn, this will shift the peaks in the acoustic power spectrum of the CMB by a factor of order 1 +/- beta. For current CMB missions, and even those in the foreseeable future, this effect is small, but should be taken into account. In principle, if the acoustic peak locations were not limited by sampling noise (i.e., the cosmic variance), this effect could be used to determine the cosmic contribution to the dipole term.Comment: 3 pages, 1 figure, comments welcome. Submitted to ApJ Letter

    Theory Challenges of the Accelerating Universe

    Get PDF
    The accelerating expansion of the universe presents an exciting, fundamental challenge to the standard models of particle physics and cosmology. I highlight some of the outstanding challenges in both developing theoretical models and interpreting without bias the observational results from precision cosmology experiments in the next decade that will return data to help reveal the nature of the new physics. Examples given focus on distinguishing a new component of energy from a new law of gravity, and the effect of early dark energy on baryon acoustic oscillations.Comment: 10 pages, 4 figures; minor changes to match J. Phys. A versio

    Effective Symmetries of the Minimal Supermultiplet of N = 8 Extended Worldline Supersymmetry

    Full text link
    A minimal representation of the N = 8 extended worldline supersymmetry, known as the `ultra-multiplet', is closely related to a family of supermultiplets with the same, E(8) chromotopology. We catalogue their effective symmetries and find a Spin(4) x Z(2) subgroup common to them all, which explains the particular basis used in the original construction. We specify a constrained superfield representation of the supermultiplets in the ultra-multiplet family, and show that such a superfield representation in fact exists for all adinkraic supermultiplets. We also exhibit the correspondences between these supermultiplets, their Adinkras and the E(8) root lattice bases. Finally, we construct quadratic Lagrangians that provide the standard kinetic terms and afford a mixing of an even number of such supermultiplets controlled by a coupling to an external 2-form of fluxes.Comment: 13 Figure

    Mechanistic Regimes of Vibronic Transport in a Heterodimer and the Design Principle of Incoherent Vibronic Transport in Phycobiliproteins

    Get PDF
    Following the observation of coherent oscillations in non-linear spectra of photosynthetic pigment protein complexes, particularly phycobilliprotein such as PC645, coherent vibronic transport has been suggested as a design principle for novel light harvesting materials operating at room temperature. Vibronic transport between energetically remote pigments is coherent when the presence of a resonant vibration supports transient delocalization between the pair of electronic excited states. Here, we establish the mechanism of vibronic transport for a model heterodimer across a wide range of molecular parameter values. The resulting mechanistic map demonstrates that the molecular parameters of phycobiliproteins in fact support incoherent vibronic transport. This result points to an important design principle: incoherent vibronic transport is more efficient than a coherent mechanism when energetic disorder exceeds the coupling between the donor and vibrationally excited acceptor states. Finally, our results suggest that the role of coherent vibronic transport in pigment protein complexes should be reevaluated

    Early Dark Energy Cosmologies

    Full text link
    We propose a novel parameterization of the dark energy density. It is particularly well suited to describe a non-negligible contribution of dark energy at early times and contains only three parameters, which are all physically meaningful: the fractional dark energy density today, the equation of state today and the fractional dark energy density at early times. As we parameterize Omega_d(a) directly instead of the equation of state, we can give analytic expressions for the Hubble parameter, the conformal horizon today and at last scattering, the sound horizon at last scattering, the acoustic scale as well as the luminosity distance. For an equation of state today w_0 < -1, our model crosses the cosmological constant boundary. We perform numerical studies to constrain the parameters of our model by using Cosmic Microwave Background, Large Scale Structure and Supernovae Ia data. At 95% confidence, we find that the fractional dark energy density at early times Omega_early < 0.06. This bound tightens considerably to Omega_early < 0.04 when the latest Boomerang data is included. We find that both the gold sample of Riess et. al. and the SNLS data by Astier et. al. when combined with CMB and LSS data mildly prefer w_0 < -1, but are well compatible with a cosmological constant.Comment: 6 pages, 3 figures; references added, matches published versio
    • …
    corecore