17 research outputs found

    Contribuciones de las técnicas machine learning a la cardiología. Predicción de reestenosis tras implante de stent coronario

    Get PDF
    [ES]Antecedentes: Existen pocos temas de actualidad equiparables a la posibilidad de la tecnología actual para desarrollar las mismas capacidades que el ser humano, incluso en medicina. Esta capacidad de simular los procesos de inteligencia humana por parte de máquinas o sistemas informáticos es lo que conocemos hoy en día como inteligencia artificial. Uno de los campos de la inteligencia artificial con mayor aplicación a día de hoy en medicina es el de la predicción, recomendación o diagnóstico, donde se aplican las técnicas machine learning. Asimismo, existe un creciente interés en las técnicas de medicina de precisión, donde las técnicas machine learning pueden ofrecer atención médica individualizada a cada paciente. El intervencionismo coronario percutáneo (ICP) con stent se ha convertido en una práctica habitual en la revascularización de los vasos coronarios con enfermedad aterosclerótica obstructiva significativa. El ICP es asimismo patrón oro de tratamiento en pacientes con infarto agudo de miocardio; reduciendo las tasas de muerte e isquemia recurrente en comparación con el tratamiento médico. El éxito a largo plazo del procedimiento está limitado por la reestenosis del stent, un proceso patológico que provoca un estrechamiento arterial recurrente en el sitio de la ICP. Identificar qué pacientes harán reestenosis es un desafío clínico importante; ya que puede manifestarse como un nuevo infarto agudo de miocardio o forzar una nueva resvascularización del vaso afectado, y que en casos de reestenosis recurrente representa un reto terapéutico. Objetivos: Después de realizar una revisión de las técnicas de inteligencia artificial aplicadas a la medicina y con mayor profundidad, de las técnicas machine learning aplicadas a la cardiología, el objetivo principal de esta tesis doctoral ha sido desarrollar un modelo machine learning para predecir la aparición de reestenosis en pacientes con infarto agudo de miocardio sometidos a ICP con implante de un stent. Asimismo, han sido objetivos secundarios comparar el modelo desarrollado con machine learning con los scores clásicos de riesgo de reestenosis utilizados hasta la fecha; y desarrollar un software que permita trasladar esta contribución a la práctica clínica diaria de forma sencilla. Para desarrollar un modelo fácilmente aplicable, realizamos nuestras predicciones sin variables adicionales a las obtenidas en la práctica rutinaria. Material: El conjunto de datos, obtenido del ensayo GRACIA-3, consistió en 263 pacientes con características demográficas, clínicas y angiográficas; 23 de ellos presentaron reestenosis a los 12 meses después de la implantación del stent. Todos los desarrollos llevados a cabo se han hecho en Python y se ha utilizado computación en la nube, en concreto AWS (Amazon Web Services). Metodología: Se ha utilizado una metodología para trabajar con conjuntos de datos pequeños y no balanceados, siendo importante el esquema de validación cruzada anidada utilizado, así como la utilización de las curvas PR (precision-recall, exhaustividad-sensibilidad), además de las curvas ROC, para la interpretación de los modelos. Se han entrenado los algoritmos más habituales en la literatura para elegir el que mejor comportamiento ha presentado. Resultados: El modelo con mejores resultados ha sido el desarrollado con un clasificador extremely randomized trees; que superó significativamente (0,77; área bajo la curva ROC a los tres scores clínicos clásicos; PRESTO-1 (0,58), PRESTO-2 (0,58) y TLR (0,62). Las curvas exhaustividad sensibilidad ofrecieron una imagen más precisa del rendimiento del modelo extremely randomized trees que muestra un algoritmo eficiente (0,96) para no reestenosis, con alta exhaustividad y alta sensibilidad. Para un umbral considerado óptimo, de 1,000 pacientes sometidos a implante de stent, nuestro modelo machine learning predeciría correctamente 181 (18%) más casos en comparación con el mejor score de riesgo clásico (TLR). Las variables más importantes clasificadas según su contribución a las predicciones fueron diabetes, enfermedad coronaria en 2 ó más vasos, flujo TIMI post-ICP, plaquetas anormales, trombo post-ICP y colesterol anormal. Finalmente, se ha desarrollado una calculadora para trasladar el modelo a la práctica clínica. La calculadora permite estimar el riesgo individual de cada paciente y situarlo en una zona de riesgo, facilitando la toma de decisión al médico en cuanto al seguimiento adecuado para el mismo. Conclusiones: Aplicado inmediatamente después de la implantación del stent, un modelo machine learning diferencia mejor a aquellos pacientes que presentarán o no reestenosis respecto a los discriminadores clásicos actuales

    Flexible Heuristics for Supporting Recommendations Within an AI Platform Aimed at Non-expert Users

    Get PDF
    The use of Machine Learning (ML) to resolve complex tasks has become popular in several contexts. While these approaches are very effective and have many related benefits, they are still very tricky for the general audience. In this sense, expert knowledge is crucial to apply ML algorithms properly and to avoid potential issues. However, in some situations, it is not possible to rely on experts to guide the development of ML pipelines. To tackle this issue, we present an approach to provide customized heuristics and recommendations through a graphical platform to build ML pipelines, namely KoopaML, focused on the medical domain.With this approach, we aim not only at providing an easy way to apply ML for non-expert users, but also at providing a learning experience for them to understand how these methods work

    Are Textual Recommendations Enough? Guiding Physicians Toward the Design of Machine Learning Pipelines Through a Visual Platform

    Get PDF
    The prevalence of artificial intelligence (AI) in our daily lives is often exaggerated by the media, leading to a positive public perception while overlooking potential problems. In the field of medicine, it is crucial to educate future healthcare professionals on the advantages and disadvantages of AI and to emphasize the importance of creating fair, ethical, and reproducible models. The KoopaML platform was developed to provide an educational and user-friendly interface for inexperienced users to create AI pipelines. This study analyzes the quantitative and interaction data gathered from a usability test involving physicians from the University Hospital of Salamanca, with the aim of identifying new interaction paradigms to improve the platform’s usability. The results shown that the platform is difficult to learn for inexperienced users due to its contents related to AI. Following these results, a set of improvements are proposed for the next version of KoopaML, focusing on reducing the interactions needed to create the pipelines

    Application of Artificial Intelligence Algorithms Within the Medical Context for Non-Specialized Users: the CARTIER-IA Platform

    Get PDF
    The use of advanced algorithms and models such as Machine Learning, Deep Learning and other related approaches of Artificial Intelligence have grown in their use given their benefits in different contexts. One of these contexts is the medical domain, as these algorithms can support disease detection, image segmentation and other multiple tasks. However, it is necessary to organize and arrange the different data resources involved in these scenarios and tackle the heterogeneity of data sources. This work presents the CARTIER-IA platform: a platform for the management of medical data and imaging. The goal of this project focuses on providing a friendly and usable interface to organize structured data, to visualize and edit medical images, and to apply Artificial Intelligence algorithms on the stored resources. One of the challenges of the platform design is to ease these complex tasks in a way that non-AI-specialized users could benefit from the application of AI algorithms without further training. Two use cases of AI application within the platform are provided, as well as a heuristic evaluation to assess the usability of the first version of CARTIER-IA. Year of Publication 2021 Journal International Journal of Interactive Multimedia and Artificial Intelligence Volume 6 Issue Regular Issue Number 6 Number of Pages 46-53 Date Published 06/2021 ISSN Number 1989-1660 URL https://www.ijimai.org/journal/sites/default/files/2021-05/ijimai_6_6_5.pdf DOI 10.9781/ijimai.2021.05.005 DOI Google Scholar BibTeX EndNote X3 XML EndNote 7 XML Endnote tagged Marc RIS Attachment ijimai_6_6_5.pdf 932.11 K

    KoopaML, a Machine Learning platform for medical data analysis

    Get PDF
    Machine Learning allows facing complex tasks related to data analysis with big datasets. This Artificial Intelligence branch allows not technical contexts to get benefits related to data processing and analysis. In particular, in medicine, medical professionals are increasingly interested in Machine Learning to identify patterns in clinical cases and make predictions regarding health issues. However, many do not have the necessary programming or technological skills to perform these tasks. Many different tools focus on developing Machine Learning pipelines, from libraries for developers and data scientists to visual tools for experts or platforms to learn. However, we have identified some requirements in the medical context that raise the need to create a customized platform adapted to end-user found in this context. This work describes the design process and the first version of KoopaML, an ML platform to bridge the data science gaps of physicians while automatizing Machine Learning pipelines. The platform is focused on enhanced interactivity to improve the engagement of physicians while still providing all the benefits derived from the introduction of Machine Learning pipelines in medical departments, as well as integrated ongoing training during the use of the tool’s features

    KoopaML: A Graphical Platform for Building Machine Learning Pipelines Adapted to Health Professionals

    Get PDF
    Machine Learning (ML) has extended its use in several domains to support complex analyses of data. The medical field, in which significant quantities of data are continuously generated, is one of the domains that can benefit from the application of ML pipelines to solve specific problems such as diagnosis, classification, disease detection, segmentation, assessment of organ functions, etc. However, while health professionals are experts in their domain, they can lack programming and theoretical skills regarding ML applications. Therefore, it is necessary to train health professionals in using these paradigms to get the most out of the application of ML algorithms to their data. In this work, we present a platform to assist non-expert users in defining ML pipelines in the health domain. The system’s design focuses on providing an educational experience to understand how ML algorithms work and how to interpret their outcomes and on fostering a flexible architecture to allow the evolution of the available components, algorithms, and heuristics

    Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods

    No full text
    Device-related thrombus (DRT) after left atrial appendage (LAA) closure is infrequent but correlates with an increased risk of thromboembolism. Therefore, the search for DRT predictors is a topic of interest. In the literature, multivariable methods have been used achieving non-consistent results, and to the best of our knowledge, machine learning techniques have not been used yet for thrombus detection after LAA occlusion. Our aim is to compare both methodologies with respect to predictive power and the search for predictors of DRT. To this end, a multicenter study including 1150 patients who underwent LAA closure was analyzed. Two lines of experiments were performed: with and without resampling. Multivariate and machine learning methodologies were applied to both lines. Predictive power and the extracted predictors for all experiments were gathered. ROC curves of 0.5446 and 0.7974 were obtained for multivariate analysis and machine learning without resampling, respectively. However, the resampling experiment showed no significant difference between them (0.52 vs. 0.53 ROC AUC). A difference between the predictors selected was observed, with the multivariable methodology being more stable. These results question the validity of predictors reported in previous studies and demonstrate their disparity. Furthermore, none of the techniques analyzed is superior to the other for these data

    Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients.

    No full text
    BackgroundEfficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management.MethodsWe trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity.ResultsA total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression.ConclusionsThis machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients
    corecore