21 research outputs found

    Cerebrolysin™ efficacy in a transgenic model of tauopathy: role in regulation of mitochondrial structure.

    Get PDF
    BackgroundAlzheimer's Disease (AD) and Fronto temporal lobar dementia (FTLD) are common causes of dementia in the aging population for which limited therapeutical options are available. These disorders are associated with Tau accumulation. We have previously shown that Cerebrolysin™ (CBL), a neuropeptide mixture with neurotrophic effects, ameliorates the behavioral deficits and neuropathological alterations in amyloid precursor protein (APP) transgenic (tg) mouse model of AD by reducing hyper-phosphorylated Tau. CBL has been tested in clinical trials for AD, however it's potential beneficial effects in FTLD are unknown. For this purpose we sought to investigate the effects of CBL in a tg model of tauopathy. Accordingly, double tg mice expressing mutant Tau under the mThy-1 promoter and GSK3β (to enhance Tau phosphorylation) were treated with CBL and evaluated neuropathologically.ResultsCompared to single Tau tg mice the Tau/GSK3β double tg model displayed elevated levels of Tau phosphorylation and neurodegeneration in the hippocampus. CBL treatment reduced the levels of Tau phosphorylation in the dentate gyrus and the degeneration of pyramidal neurons in the temporal cortex and hippocampus of the Tau/GSK3β double tg mice. Interestingly, the Tau/GSK3β double tg mice also displayed elevated levels of Dynamin-related protein-1 (Drp-1), a protein that hydrolyzes GTP and is required for mitochondrial division. Ultrastructural analysis of the mitochondria in the Tau/GSK3β double tg mice demonstrated increased numbers and fragmentation of mitochondria in comparison to non-tg mice. CBL treatment normalized levels of Drp-1 and restored mitochondrial structure.ConclusionsThese results suggest that the ability of CBL to ameliorate neurodegenerative pathology in the tauopathy model may involve reducing accumulation of hyper-phosphorylated Tau and reducing alterations in mitochondrial biogenesis associated with Tau

    Morphological and physiological characterization of filamentous Lentzea aerocolonigenes: Comparison of biopellets by microscopy and flow cytometry

    Get PDF
    Cell morphology of filamentous microorganisms is highly interesting during cultivations as it is often linked to productivity and can be influenced by process conditions. Hence, the characterization of cell morphology is of major importance to improve the understanding of industrial processes with filamentous microorganisms. For this purpose, reliable and robust methods are necessary. In this study, pellet morphology and physiology of the rebeccamycin producing filamentous actinomycete Lentzea aerocolonigenes were investigated by microscopy and flow cytometry. Both methods were compared regarding their applicability. To achieve different morphologies, a cultivation with glass bead addition (Ø = 969 μm, 100 g L-1) was compared to an unsupplemented cultivation. This led to two different macro-morphologies. Furthermore, glass bead addition increased rebeccamycin titers after 10 days of cultivation (95 mg L-1 with glass beads, 38 mg L-1 without glass beads). Macro-morphology and viability were investigated through microscopy and flow cytometry. For viability assessment fluorescent staining was used additionally. Smaller, more regular pellets were found for glass bead addition. Pellet diameters resulting from microscopy followed by image analysis were 172 μm without and 106 μm with glass beads, diameters from flow cytometry were 170 and 100 μm, respectively. These results show excellent agreement of both methods, each considering several thousand pellets. Furthermore, the pellet viability obtained from both methods suggested an enhanced metabolic activity in glass bead treated pellets during the exponential production phase. However, total viability values differ for flow cytometry (0.32 without and 0.41 with glass beads) and confocal laser scanning microscopy of single stained pellet slices (life ratio in production phase of 0.10 without and 0.22 with glass beads), which is probably caused by the different numbers of investigated pellets. In confocal laser scanning microscopy only one pellet per sample could be investigated while flow cytometry considered at least 50 pellets per sample, resulting in an increased statistical reliability

    Region and cell-type resolved quantitative proteomic map of the human heart

    Get PDF
    The heart is a central human organ and its diseases are the leading cause of death worldwide, but an in-depth knowledge of the identity and quantity of its constituent proteins is still lacking. Here, we determine the healthy human heart proteome by measuring 16 anatomical regions and three major cardiac cell types by high-resolution mass spectrometry-based proteomics. From low microgram sample amounts, we quantify over 10,700 proteins in this high dynamic range tissue. We combine copy numbers per cell with protein organellar assignments to build a model of the heart proteome at the subcellular level. Analysis of cardiac fibroblasts identifies cellular receptors as potential cell surface markers. Application of our heart map to atrial fibrillation reveals individually distinct mitochondrial dysfunctions. The heart map is available at maxqb. biochem. mpg. de as a resource for future analyses of normal heart function and disease

    <i>Tetraedron minimum</i>, First Reported Member of Hydrodictyaceae to Accumulate Secondary Carotenoids

    No full text
    We isolated a novel strain of the microalga Tetraedron minimum in Iceland from a terrestrial habitat. During long-term cultivation, a dish culture turned orange, indicating the presence of secondary pigments. Thus, we characterized T. minimum for growth and possible carotenoid production in different inorganic media. In a lab-scale photobioreactor, we confirmed that nitrogen starvation in combination with salt stress triggered a secondary carotenoid accumulation. The development of the pigment composition and the antioxidant capacity of the extracts was analyzed throughout the cultivations. The final secondary carotenoid composition was, on average, 61.1% astaxanthin and 38.9% adonixanthin. Moreover, the cells accumulated approx. 83.1% unsaturated fatty acids. This work presents the first report of the formation of secondary carotenoids within the family Hydrodictyaceae (Sphaeropleales, Chlorophyta)

    A Chemometric Tool to Monitor and Predict Cell Viability in Filamentous Fungi Bioprocesses Using UV Chromatogram Fingerprints

    No full text
    Monitoring process variables in bioprocesses with complex expression systems, such as filamentous fungi, requires a vast number of offline methods or sophisticated inline sensors. In this respect, cell viability is a crucial process variable determining the overall process performance. Thus, fast and precise tools for identification of key process deviations or transitions are needed. However, such reliable monitoring tools are still scarce to date or require sophisticated equipment. In this study, we used the commonly available size exclusion chromatography (SEC) HPLC technique to capture impurity release information in Penicillium chrysogenum bioprocesses. We exploited the impurity release information contained in UV chromatograms as fingerprints for development of principal component analysis (PCA) models to descriptively analyze the process trends. Prediction models using well established approaches, such as partial least squares (PLS), orthogonal PLS (OPLS) and principal component regression (PCR), were made to predict the viability with model accuracies of 90% or higher. Furthermore, we demonstrated the platform applicability of our method by monitoring viability in a Trichoderma reesei process for cellulase production. We are convinced that this method will not only facilitate monitoring viability of complex bioprocesses but could also be used for enhanced process control with hybrid models in the future

    In Situ Quantification of Polyhydroxybutyrate in Photobioreactor Cultivations of Synechocystis sp. Using an Ultrasound-Enhanced ATR-FTIR Spectroscopy Probe

    No full text
    Polyhydroxybutyrate (PHB) is a very promising alternative to most petroleum-based plastics with the huge advantage of biodegradability. Biotechnological production processes utilizing cyanobacteria as sustainable source of PHB require fast in situ process analytical technology (PAT) tools for sophisticated process monitoring. Spectroscopic probes supported by ultrasound particle traps provide a powerful technology for in-line, nondestructive, and real-time process analytics in photobioreactors. This work shows the great potential of using ultrasound particle manipulation to improve spectroscopic attenuated total reflection Fourier-transformed mid-infrared (ATR-FTIR) spectra as a monitoring tool for PHB production processes in photobioreactors

    Tetraedron minimum, First Reported Member of Hydrodictyaceae to Accumulate Secondary Carotenoids

    No full text
    We isolated a novel strain of the microalga Tetraedron minimum in Iceland from a terrestrial habitat. During long-term cultivation, a dish culture turned orange, indicating the presence of secondary pigments. Thus, we characterized T. minimum for growth and possible carotenoid production in different inorganic media. In a lab-scale photobioreactor, we confirmed that nitrogen starvation in combination with salt stress triggered a secondary carotenoid accumulation. The development of the pigment composition and the antioxidant capacity of the extracts was analyzed throughout the cultivations. The final secondary carotenoid composition was, on average, 61.1% astaxanthin and 38.9% adonixanthin. Moreover, the cells accumulated approx. 83.1% unsaturated fatty acids. This work presents the first report of the formation of secondary carotenoids within the family Hydrodictyaceae (Sphaeropleales, Chlorophyta)

    Update on Percutaneous Local Ablative Procedures for the Treatment of Hepatocellular Carcinoma

    No full text
    Background Hepatocellular carcinoma (HCC) is the fifth most common tumor worldwide. Because many hepatocellular carcinomas are already unresectable at the time of initial diagnosis, percutaneous tumor ablation has become established in recent decades as a curative therapeutic approach for very early (BCLC 0) and early (BCLC A) HCC. The aim of this paper is to provide a concise overview of the percutaneous local ablative procedures currently in use, based on their technical characteristics as well as clinical relevance, taking into account the current body of studies. Materials and Methods The literature search included all original papers, reviews, and meta-analyses available via MEDLINE and Pubmed on the respective percutaneous ablation procedures; the primary focus was on randomized controlled trials and publications from the last 10 years. Results and Conclusions Radiofrequency ablation (RFA) and microwave ablation (MWA) are well-established procedures that are considered equal to surgical resection in the treatment of stage BCLC 0 and A HCC with a diameter up to 3 cm due to their strong evidence in international and national guidelines. For tumors with a diameter between 3 and 5 cm, the current S3 guidelines recommend a combination of transarterial chemoembolization (TACE) and thermal ablation using RFA or MWA as combination therapy is superior to thermal ablation alone in tumors of this size and shows comparable results to surgical resection in terms of overall survival. Alternative, less frequently employed thermal procedures include cryotherapy (CT) and laser ablation (LA). Non-thermal procedures include irreversible electroporation (IRE), interstitial brachytherapy (IBT), and most recently, electrochemotherapy (ECT). Due to insufficient evidence, these have only been used in individual cases and within the framework of studies. However, the nonthermal methods are a reasonable alternative for ablation of tumors adjacent to large blood vessels and bile ducts because they cause significantly less damage to these structures than thermal ablation methods. With advances in the technology of the respective procedures, increasingly good evidence, and advancements in supportive techniques such as navigation devices and fusion imaging, percutaneous ablation procedures may expand their indications for the treatment of larger and more advanced tumors in the coming years. Citation Format Luerken L, Haimerl M, Doppler M et al. Update on Percutaneous Local Ablative Procedures for the Treatment of Hepatocellular Carcinoma. Fortschr Rontgenstr 2022; DOI: 10.1055/a-1768-0954 Background Hepatocellular carcinoma (HCC) is the fifth most common tumor worldwide. Because many hepatocellular carcinomas are already unresectable at the time of initial diagnosis, percutaneous tumor ablation has become established in recent decades as a curative therapeutic approach for very early (BCLC 0) and early (BCLC A) HCC. The aim of this paper is to provide a concise overview of the percutaneous local ablative procedures currently in use, based on their technical characteristics as well as clinical relevance, taking into account the current body of studies. Materials and Methods The literature search included all original papers, reviews, and meta-analyses available via MEDLINE and Pubmed on the respective percutaneous ablation procedures; the primary focus was on randomized controlled trials and publications from the last 10 years. Results and Conclusions Radiofrequency ablation (RFA) and microwave ablation (MWA) are well-established procedures that are considered equal to surgical resection in the treatment of stage BCLC 0 and A HCC with a diameter up to 3 cm due to their strong evidence in international and national guidelines. For tumors with a diameter between 3 and 5 cm, the current S3 guidelines recommend a combination of transarterial chemoembolization (TACE) and thermal ablation using RFA or MWA as combination therapy is superior to thermal ablation alone in tumors of this size and shows comparable results to surgical resection in terms of overall survival. Alternative, less frequently employed thermal procedures include cryotherapy (CT) and laser ablation (LA). Non-thermal procedures include irreversible electroporation (IRE), interstitial brachytherapy (IBT), and most recently, electrochemotherapy (ECT). Due to insufficient evidence, these have only been used in individual cases and within the framework of studies. However, the nonthermal methods are a reasonable alternative for ablation of tumors adjacent to large blood vessels and bile ducts because they cause significantly less damage to these structures than thermal ablation methods. With advances in the technology of the respective procedures, increasingly good evidence, and advancements in supportive techniques such as navigation devices and fusion imaging, percutaneous ablation procedures may expand their indications for the treatment of larger and more advanced tumors in the coming years. Citation Format Luerken L, Haimerl M, Doppler M et al. Update on Percutaneous Local Ablative Procedures for the Treatment of Hepatocellular Carcinoma. Fortschr Rontgenstr 2022; DOI: 10.1055/a-1768-095

    Stereotactic Microwave Ablation of Hepatocellular Carcinoma: The Impact of Tumor Size and Minimal Ablative Margin on Therapeutic Success

    No full text
    Background: Microwave ablation (MWA) has gained relevance in the treatment of hepatic malignancies and especially in hepatocellular carcinoma (HCC), and it is an important alternative to surgery. The purpose of the study was to evaluate whether the minimal ablative margin (MAM) or the initial tumor size has a greater effect on the success of stereotactic MWA of HCC regarding the time to local tumor progression (LTP) and overall survival (OS). Methods: 88 patients, who received stereotactic MWA of 127 tumor lesions with a curative intention were included in this single-center, retrospective study. The MAM was evaluated in a side-by-side comparison of pre- and post-ablative, contrast-enhanced slice imaging. A Cox proportional hazard model with a frailty term was computed to assess the influence of the MAM and the maximum tumor diameter on the time to LTP and the OS. Results: The maximum tumor diameter was identified as a significant positive predictor for LTP (hazard ratio 1.04, 95% CI 1.00&ndash;1.08, p = 0.03), but it was not a significant positive predictor for the OS (p = 0.20). The MAM did not have a significant influence on LTP-free survival (p = 0.23) and OS (p = 0.67). Conclusion: For the successful stereotactic MWA of HCC, the MAM and maximum tumor diameter might not have an influence on the OS, but the maximum tumor diameter seems to be an independent predictor of the time to LTP
    corecore