8 research outputs found

    Modular droplet injector for sample conservation providing new structural insight for the conformational heterogeneity in the disease-associated NQO1 enzyme

    Get PDF
    Droplet injection strategies are a promising tool to reduce the large amount of sample consumed in serial femtosecond crystallography (SFX) measurements at X-ray free electron lasers (XFELs) with continuous injection approaches. Here, we demonstrate a new modular microfluidic droplet injector (MDI) design that was successfully applied to deliver microcrystals of the human NAD(P)H:quinone oxidoreductase 1 (NQO1) and phycocyanin. We investigated droplet generation conditions through electrical stimulation for both protein samples and implemented hardware and software components for optimized crystal injection at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Stanford Linac Coherent Light Source (LCLS). Under optimized droplet injection conditions, we demonstrate that up to 4-fold sample consumption savings can be achieved with the droplet injector. In addition, we collected a full data set with droplet injection for NQO1 protein crystals with a resolution up to 2.7 Å, leading to the first room- temperature structure of NQO1 at an XFEL. NQO1 is a flavoenzyme associated with cancer, Alzheimer's and Parkinson's disease, making it an attractive target for drug discovery. Our results reveal for the first time that residues Tyr128 and Phe232, which play key roles in the function of the protein, show an unexpected conformational heterogeneity at room temperature within the crystals. These results suggest that different substates exist in the conformational ensemble of NQO1 with functional and mechanistic implications for the enzyme's negative cooperativity through a conformational selection mechanism. Our study thus demonstrates that microfluidic droplet injection constitutes a robust sample-conserving injection method for SFX studies on protein crystals that are difficult to obtain in amounts necessary for continuous injection, including the large sample quantities required for time-resolved mix-and-inject studies.STC Program of the National Science Foundation through BioXFEL (under agreement # 1231306)ABI Innovations award (NSF # 1565180), IIBR award (# 1943448)MCB award (1817862)National Institutes of Health award # R01GM095583US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract # DE-AC02- 76SF00515Center for Structural Dynamics in Biology, NIH grant P41GM13968“Ayuda de Atracción y Retención de Talento Investigador” from the Community of Madrid, Spain (REF: 2019-T1/BMD-15552)ERDF/Spanish Ministry of Science, Innovation, and Universities—State Research Agency (grant RTI2018-096246-B- I00), Consejería de Economía, Conocimiento, Empresas, y Universidad, Junta de Andalucía (grant P18-RT-2413),ERDF/Counseling of Economic transformation, Industry, Knowledge, and Universities (grant B-BIO-84-UGR20

    Electrically stimulated droplet injector for reduced sample consumption in serial crystallography

    Get PDF
    15 pags., 6 figs., 1 tab.With advances in X-ray free-electron lasers (XFELs), serial femtosecond crystallography (SFX) has enabled the static and dynamic structure determination for challenging proteins such as membrane protein complexes. In SFX with XFELs, the crystals are typically destroyed after interacting with a single XFEL pulse. Therefore, thousands of new crystals must be sequentially introduced into the X-ray beam to collect full data sets. Because of the serial nature of any SFX experiment, up to 99% of the sample delivered to the X-ray beam during its "off-time" between X-ray pulses is wasted due to the intrinsic pulsed nature of all current XFELs. To solve this major problem of large and often limiting sample consumption, we report on improvements of a revolutionary sample-saving method that is compatible with all current XFELs. We previously reported 3D-printed injection devices coupled with gas dynamic virtual nozzles (GDVNs) capable of generating samples containing droplets segmented by an immiscible oil phase for jetting crystal-laden droplets into the path of an XFEL. Here, we have further improved the device design by including metal electrodes inducing electrowetting effects for improved control over droplet generation frequency to stimulate the droplet release to matching the XFEL repetition rate by employing an electrical feedback mechanism. We report the improvements in this electrically triggered segmented flow approach for sample conservation in comparison with a continuous GDVN injection using the microcrystals of lysozyme and 3-deoxy-D-manno-octulosonate 8-phosphate synthase and report the segmented flow approach for sample injection applied at the Macromolecular Femtosecond Crystallography instrument at the Linear Coherent Light Source for the first time.Financial support from the STC Program of the National Science Foundation through BioXFEL under agreement no. 1231306, NSF ABI Innovations award no. 1565180, and the National Institutes of Health award no. R01GM095583 is gratefully acknowledged. The use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is generously supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. The HERA system for in-helium experiments at MFX was developed by Bruce Doak and funded by the Max Planck Institute for Medical Research. This work was also supported by The Center for Structural Dynamics in Biology, NIH grant P41GM139687.Peer reviewe

    Modular droplet injector for sample conservation providing new structural insight for the conformational heterogeneity in the disease-associated NQO1 enzyme

    No full text
    18 pags. 7 figs., 1 tab. -- This article is part of the themed collection: Lab on a Chip HOT Articles 2023Droplet injection strategies are a promising tool to reduce the large amount of sample consumed in serial femtosecond crystallography (SFX) measurements at X-ray free electron lasers (XFELs) with continuous injection approaches. Here, we demonstrate a new modular microfluidic droplet injector (MDI) design that was successfully applied to deliver microcrystals of the human NAD(P)H:quinone oxidoreductase 1 (NQO1) and phycocyanin. We investigated droplet generation conditions through electrical stimulation for both protein samples and implemented hardware and software components for optimized crystal injection at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Stanford Linac Coherent Light Source (LCLS). Under optimized droplet injection conditions, we demonstrate that up to 4-fold sample consumption savings can be achieved with the droplet injector. In addition, we collected a full data set with droplet injection for NQO1 protein crystals with a resolution up to 2.7 Å, leading to the first room-temperature structure of NQO1 at an XFEL. NQO1 is a flavoenzyme associated with cancer, Alzheimer's and Parkinson's disease, making it an attractive target for drug discovery. Our results reveal for the first time that residues Tyr128 and Phe232, which play key roles in the function of the protein, show an unexpected conformational heterogeneity at room temperature within the crystals. These results suggest that different substates exist in the conformational ensemble of NQO1 with functional and mechanistic implications for the enzyme's negative cooperativity through a conformational selection mechanism. Our study thus demonstrates that microfluidic droplet injection constitutes a robust sample-conserving injection method for SFX studies on protein crystals that are difficult to obtain in amounts necessary for continuous injection, including the large sample quantities required for time-resolved mix-and-inject studies.Financial support from the STC Program of the National Science Foundation through BioXFEL (under agreement # 1231306), ABI Innovations award (NSF # 1565180), IIBR award (# 1943448), MCB award (1817862), and the National Institutes of Health award # R01GM095583 is gratefully acknowledged. The use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is generously supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract # DE-AC02-76SF00515. The authors would like to acknowledge the instrument group and facility staff for their assistance in the use of the MFX instrument during proposal MFXLW7919 at LCLS. The HERA system for in-helium experiments at MFX was developed by Bruce Doak and funded by the Max Planck Institute for Medical Research. This work was also supported by The Center for Structural Dynamics in Biology, NIH grant P41GM139687. Alice Grieco and Jose M. Martin-Garcia were supported by the “Ayuda de Atracción y Retención de Talento Investigador” from the Community of Madrid, Spain (REF: 2019-T1/BMD-15552). JLPG and ALP acknowledge funding from the ERDF/Spanish Ministry of Science, Innovation, and Universities—State Research Agency (grant RTI2018-096246-BI00), Consejería de Economía, Conocimiento, Empresas, y Universidad, Junta de Andalucía (grant P18-RT-2413), and ERDF/Counseling of Economic transformation, Industry, Knowledge, and Universities (grant B-BIO-84-UGR20).Peer reviewe

    Direct Observation of the Mechanism of Antibiotic Resistance by Mix-and-Inject at the European XFEL

    No full text
    In this study, we follow the diffusion and buildup of occupancy of the substrate ceftriaxone in M. tuberculosis β-lactamase BlaC microcrystals by structural analysis of the enzyme substrate complex at single millisecond time resolution. We also show the binding and the reaction of an inhibitor, sulbactam, on a slower millisecond time scale. We use the ‘mix-and-inject’ technique to initiate these reactions by diffusion, and determine the resulting structures by serial crystallography using ultrafast, intense X-ray pulses from the European XFEL (EuXFEL) arriving at MHz repetition rates. Here, we show how to use the EuXFEL pulse structure to dramatically increase the size of the data set and thereby the quality and time resolution of “molecular movies” which unravel ligand binding and enzymatically catalyzed reactions. This shows the great potential for the EuXFEL as a tool for biomedically relevant research, particularly, as shown here, for investigating bacterial antibiotic resistance

    Time-resolved serial femtosecond crystallography at the European XFEL

    No full text
    The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution. Time-resolved crystallographic investigations on biological macromolecules belong to an important class of experiments that explore fundamental and functional structural displacements in these molecules. Due to the unusual MHz X-ray pulse structure at the EuXFEL, these experiments are challenging. Here, we demonstrate how a biological reaction can be followed on ultrafast timescales at the EuXFEL. We investigate the picosecond time range in the photocycle of photoactive yellow protein (PYP) with MHz X-ray pulse rates. We show that difference electron density maps of excellent quality can be obtained. The results connect the previously explored femtosecond PYP dynamics to timescales accessible at synchrotrons. This opens the door to a wide range of time-resolved studies at the EuXFEL

    Co-flow injection for serial crystallography at X-ray free-electron lasers

    No full text
    Serial femtosecond crystallography (SFX) is a powerful technique that exploits X-ray free-electron lasers to determine the structure of macro­molecules at room temperature. Despite the impressive exposition of structural details with this novel crystallographic approach, the methods currently available to introduce crystals into the path of the X-ray beam sometimes exhibit serious drawbacks. Samples requiring liquid injection of crystal slurries consume large quantities of crystals (at times up to a gram of protein per data set), may not be compatible with vacuum configurations on beamlines or provide a high background due to additional sheathing liquids present during the injection. Proposed and characterized here is the use of an immiscible inert oil phase to supplement the flow of sample in a hybrid microfluidic 3D-printed co-flow device. Co-flow generation is reported with sample and oil phases flowing in parallel, resulting in stable injection conditions for two different resin materials experimentally. A numerical model is presented that adequately predicts these flow-rate conditions. The co-flow generating devices reduce crystal clogging effects, have the potential to conserve protein crystal samples up to 95% and will allow degradation-free light-induced time-resolved SFX
    corecore