18 research outputs found

    Electrically stimulated droplet injector for reduced sample consumption in serial crystallography

    Get PDF
    15 pags., 6 figs., 1 tab.With advances in X-ray free-electron lasers (XFELs), serial femtosecond crystallography (SFX) has enabled the static and dynamic structure determination for challenging proteins such as membrane protein complexes. In SFX with XFELs, the crystals are typically destroyed after interacting with a single XFEL pulse. Therefore, thousands of new crystals must be sequentially introduced into the X-ray beam to collect full data sets. Because of the serial nature of any SFX experiment, up to 99% of the sample delivered to the X-ray beam during its "off-time" between X-ray pulses is wasted due to the intrinsic pulsed nature of all current XFELs. To solve this major problem of large and often limiting sample consumption, we report on improvements of a revolutionary sample-saving method that is compatible with all current XFELs. We previously reported 3D-printed injection devices coupled with gas dynamic virtual nozzles (GDVNs) capable of generating samples containing droplets segmented by an immiscible oil phase for jetting crystal-laden droplets into the path of an XFEL. Here, we have further improved the device design by including metal electrodes inducing electrowetting effects for improved control over droplet generation frequency to stimulate the droplet release to matching the XFEL repetition rate by employing an electrical feedback mechanism. We report the improvements in this electrically triggered segmented flow approach for sample conservation in comparison with a continuous GDVN injection using the microcrystals of lysozyme and 3-deoxy-D-manno-octulosonate 8-phosphate synthase and report the segmented flow approach for sample injection applied at the Macromolecular Femtosecond Crystallography instrument at the Linear Coherent Light Source for the first time.Financial support from the STC Program of the National Science Foundation through BioXFEL under agreement no. 1231306, NSF ABI Innovations award no. 1565180, and the National Institutes of Health award no. R01GM095583 is gratefully acknowledged. The use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is generously supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. The HERA system for in-helium experiments at MFX was developed by Bruce Doak and funded by the Max Planck Institute for Medical Research. This work was also supported by The Center for Structural Dynamics in Biology, NIH grant P41GM139687.Peer reviewe

    Quantification of the neurochemical profile of the human putamen using STEAM MRS in a cohort of elderly subjects at 3 T and 7 T: Ruminations on the correction strategy for the tissue voxel composition

    No full text
    The aim of this work is to quantify the metabolic profile of the human putamen in vivo in a cohort of elderly subjects using single-voxel proton magnetic resonance spectroscopy. To obtain metabolite concentrations specific to the putamen, we investigated a correction method previously proposed to account for the tissue composition of the volume of interest. We compared the method with the conventional approach, which a priori assumes equal metabolite concentrations in GM and WM. Finally, we compared the concentrations acquired at 3 Tesla (T) and 7 T MRI scanners. Spectra were acquired from 15 subjects (age: 67.7 ± 8.3 years) at 3 T and 7 T, using an ultra-short echo time, stimulated echo acquisition mode sequence. To robustly estimate the WM-to-GM metabolite concentration ratio, five additional subjects were measured for whom the MRS voxel was deliberately shifted from the putamen in order to increase the covered amount of surrounding WM. The concentration and WM-to-GM concentration ratio for 16 metabolites were reliably estimated. These ratios ranged from ~0.3 for γ-aminobutyric acid to ~4 for N-acetylaspartylglutamate. The investigated correction method led to significant changes in concentrations compared to the conventional method, provided that the ratio significantly differed from unity. Finally, we demonstrated that differences in tissue voxel composition cannot fully account for the observed concentration difference between field strengths. We provide not only a fully comprehensive quantification of the neurochemical profile of the putamen in elderly subjects, but also a quantification of the WM-to-GM concentration ratio. This knowledge may serve as a basis for future studies with varying tissue voxel composition, either due to tissue atrophy, inconsistent voxel positioning or simply when pooling data from different voxel locations

    Differential Impact of Social and Monetary Reward on Procedural Learning and Consolidation in Aging and Its Structural Correlates

    No full text
    In young (n = 36, mean +/- SD: 24.8 +/- 4.5 years) and older (n = 34, mean +/- SD: 65.1 +/- 6.5 years) healthy participants, we employed a modified version of the Serial Reaction Time task to measure procedural learning (PL) and consolidation while providing monetary and social reward. Using voxel-based morphometry (VBM), we additionally determined the structural correlates of reward-related motor performance (RMP) and PL. Monetary reward had a beneficial effect on PL in the older subjects only. In contrast, social reward significantly enhanced PL in the older and consolidation in the young participants. VBM analyses revealed that motor performance related to monetary reward was associated with larger grey matter volume (GMV) of the left striatum in the young, and motor performance related to social reward with larger GMV of the medial orbitofrontal cortex in the older group. The differential effects of social reward in young (improved consolidation) and both social and monetary rewards in older (enhanced PL) healthy subjects point to the potential of rewards for interventions targeting aging-associated motor decline or stroke-induced motor deficits

    Visuo‐spatial processing is linked to cortical glutamate dynamics in Parkinson's disease – a 7 Tesla functional MRS study

    No full text
    Background and purpose: Cognitive decline is a frequent and debilitating non-motor symptom for patients with Parkinson's disease (PD). Metabolic alterations in the occipital cortex during visual processing may serve as a biomarker for cognitive decline in patients with PD.Methods: Sixteen patients with PD (Unified Parkinson's Disease Rating Scale Part 3, OFF, 38.69 ± 17.25) and 10 age- and sex-matched healthy controls (HC) underwent 7-T functional magnetic resonance spectroscopy (MRS) utilizing a visual checkerboard stimulation. Glutamate metabolite levels during rest versus stimulation were compared. Furthermore, correlates of the functional MRS response with performance in visuo-cognitive tests were investigated.Results: No differences in static MRS between patients with PD and HC were detected, but a dynamic glutamate response was observed in functional MRS in HC upon visual stimulation, which was blunted in patients with PD (F1,22 = 7.13, p = 0.014; η2p= 0.245). A diminished glutamate response correlated with poorer performance in the Benton Judgment of Line Orientation test in PD (r = -0.57, p = 0.020).Conclusions: Our results indicate that functional MRS captures even subtle differences in neural processing linked to the behavioral performance, which would have been missed by conventional, static MRS. Functional MRS thus represents a promising tool for studying molecular alterations at high sensitivity. Its prognostic potential should be evaluated in longitudinal studies, prospectively contributing to earlier diagnosis and individual treatment decisions.Keywords: biomarker; cognitive decline; functional magnetic resonance spectroscopy; visuo-cognition

    Putaminal y-Aminobutyric Acid Modulates Motor Response to Dopaminergic Therapy in Parkinson's Disease

    No full text
    Background Motor response to dopaminergic therapy is a characteristic of patients with Parkinson's disease (PD). Whether nondopaminergic neurotransmitters contribute to treatment response is uncertain. Objectives The aim of this study is to determine whether putaminal y-aminobutyric acid (GABA) levels are associated with dopaminergic motor response. Methods We assessed putaminal GABA levels in 19 PD patients and 13 healthy controls (HCs) utilizing ultra-high field proton magnetic resonance spectroscopy. Motor performance was evaluated using the Movement Disorder Society-Unified Parkinson's Disease Rating Scale, Part III, in the ON and OFF states. Statistical analysis comprised group comparisons, correlation analysis, and multiple linear regression. Results In PD, GABA levels were significantly higher compared to HCs (1.50 +/- 0.26 mM vs. 1.26 +/- 0.31 mM, P = 0.022). Furthermore, GABA levels were independent predictors of absolute and relative dopaminergic treatment response. Conclusions Our findings indicate that elevated putaminal GABA levels are associated with worse dopaminergic response in PD, emphasizing the essential role of nondopaminergic neurotransmitters in motor response. (c) 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Societ

    Microsleep disturbances are associated with noradrenergic dysfunction in Parkinson’s disease

    No full text
    Study ObjectivesParkinson’s disease (PD) commonly involves degeneration of sleep-wake regulating brainstem nuclei; likewise, sleep-wake disturbances are highly prevalent in PD patients. As polysomnography macroparameters typically show only minor changes in PD, we investigated sleep microstructure, particularly cyclic alternating pattern (CAP), and its relation to alterations of the noradrenergic system in these patients.MethodsWe analyzed 27 PD patients and 13 healthy control (HC) subjects who underwent overnight polysomnography and 11C-MeNER positron emission tomography for evaluation of noradrenaline transporter density. Sleep macroparameters, as well as CAP metrics, were evaluated according to the consensus statement from 2001. Statistical analysis comprised group comparisons and correlation analysis of CAP metrics with clinical characteristics of PD patients as well as noradrenaline transporter density.ResultsPD patients and HC subjects were comparable in demographic characteristics (age, sex, body mass index) and polysomnography macroparameters. CAP rate as well as A index differed significantly between groups, with PD patients having a lower CAP rate (46.7 ± 6.6% versus 38.0 ± 11.6%, p = 0.015) and lower A index (49.0 ± 8.7/hour versus 40.1 ± 15.4/hour, p = 0.042). In PD patients, both CAP metrics correlated significantly with diminished noradrenaline transporter density in arousal prompting brainstem nuclei (locus coeruleus, raphe nuclei) as well as arousal propagating brain structures like thalamus and bitemporal cortex.ConclusionsSleep microstructure is more severely altered than sleep macrostructure in PD patients and is associated with widespread dysfunction of the noradrenergic arousal system

    RBDtector: an open-source software to detect REM sleep without atonia according to visual scoring criteria

    No full text
    Abstract REM sleep without atonia (RSWA) is a key feature for the diagnosis of rapid eye movement (REM) sleep behaviour disorder (RBD). We introduce RBDtector, a novel open-source software to score RSWA according to established SINBAR visual scoring criteria. We assessed muscle activity of the mentalis, flexor digitorum superficialis (FDS), and anterior tibialis (AT) muscles. RSWA was scored manually as tonic, phasic, and any activity by human scorers as well as using RBDtector in 20 subjects. Subsequently, 174 subjects (72 without RBD and 102 with RBD) were analysed with RBDtector to show the algorithm’s applicability. We additionally compared RBDtector estimates to a previously published dataset. RBDtector showed robust conformity with human scorings. The highest congruency was achieved for phasic and any activity of the FDS. Combining mentalis any and FDS any, RBDtector identified RBD subjects with 100% specificity and 96% sensitivity applying a cut-off of 20.6%. Comparable performance was obtained without manual artefact removal. RBD subjects also showed muscle bouts of higher amplitude and longer duration. RBDtector provides estimates of tonic, phasic, and any activity comparable to human scorings. RBDtector, which is freely available, can help identify RBD subjects and provides reliable RSWA metrics
    corecore