29 research outputs found

    Uncovering the Functional Link Between SHANK3 Deletions and Deficiency in Neurodevelopment Using iPSC-Derived Human Neurons

    Get PDF
    SHANK3 mutations, including de novo deletions, have been associated with autism spectrum disorders (ASD). However, the effects of SHANK3 loss of function on neurodevelopment remain poorly understood. Here we generated human induced pluripotent stem cells (iPSC) in vitro, followed by neuro-differentiation and lentivirus-mediated shRNA expression to evaluate how SHANK3 knockdown affects the in vitro neurodevelopmental process at multiple time points (up to 4 weeks). We found that SHANK3 knockdown impaired both early stage of neuronal development and mature neuronal function, as demonstrated by a reduction in neuronal soma size, growth cone area, neurite length and branch numbers. Notably, electrophysiology analyses showed defects in excitatory and inhibitory synaptic transmission. Furthermore, transcriptome analyses revealed that multiple biological pathways related to neuron projection, motility and regulation of neurogenesis were disrupted in cells with SHANK3 knockdown. In conclusion, utilizing a human iPSC-based neural induction model, this study presented combined morphological, electrophysiological and transcription evidence that support that SHANK3 as an intrinsic, cell autonomous factor that controls cellular function development in human neurons

    A Fuzzy Approach to Sequential Failure Analysis Using Petri nets

    No full text
    In highly competitive industrial market, the concept of failure analysis is an unavoidable fact in complex industrial systems. Reliability of such systems not only depends on the reliability of each element of these systems, but also depends on occurrence of sequence of failures. In this paper, a novel approach to sequential failure analysis is proposed which is based upon fuzzy logic and the concept of Petri nets which is utilized to track all the risky behaviors of the system and to determine the potential failure sequences and then prioritizing them in order to perform corrective actions. The process of prioritizing failure sequences in this paper is done by a novel similarity measure between generalized fuzzy numbers. The proposed methodology is demonstrated with an example of two automated machine tools and two input/output buffer stocks

    A Hybrid Approach to Failure Analysis Using Stochastic Petri Nets and Ranking Generalized Fuzzy Numbers

    No full text
    We present a novel failure analysis approach combining structural properties of stochastic Petri Nets and flexibility of fuzzy logic. Firstly, we develop a powerful fuzzy ranking technique. We analyze major drawbacks of existing ranking techniques. Then we demonstrate the capabilities of the presented algorithm to overcome such drawbacks. The approach considers weight, spread, and difference of coordinate of the center of gravity (COG) point of each fuzzy number and is able to deal with a wide variety of fuzzy numbers. Using this technique, we utilize isomorphism between stochastic Petri Nets and their corresponding Markov chains and present a failure analysis algorithm incorporating some critical factors. This algorithm can be implemented in diverse industrial applications

    Transcriptional network analysis on brains reveals a potential regulatory role of PPP1R3F in autism spectrum disorders

    No full text
    Abstract Objective This study aims at identifying master regulators of transcriptional networks in autism spectrum disorders (ASDs). Results With two sets of independent RNA-Seq data generated on cerebellum from patients with ASDs and control subjects (N = 39 and 45 for set 1, N = 24 and 38 for set 2, respectively), we carried out a network deconvolution of transcriptomic data, followed by virtual protein activity analysis. We identified PPP1R3F (Protein Phosphatase 1 Regulatory Subunit 3F) as a candidate master regulator affecting a large body of downstream genes that are associated with the disease phenotype. Pathway analysis on the identified targets of PPP1R3F in both datasets indicated alteration of endocytosis pathway. Despite a limited sample size, our study represents one of the first applications of network deconvolution approach to brain transcriptomic data to generate hypotheses that may be further validated by large-scale studies

    Sequential Failure Analysis Using Novel Algorithms in Sequence Determination of Petri Nets Firing

    Get PDF
    Failure occurrence in industrial systems can be a result of a sequence of failures leading to a total system failure. Up to now, several methods to determine failure sequences and to calculate probability of such failures have been proposed. These methods primarily focus on modeling aspects of the problem and do not present a certain framework to determine potential failure sequences. In this paper, a novel approach based on Petri net modeling of the systems is proposed and several heuristic algorithms are developed. Determination of potential failures in sample industrial problems and comparing the results with other existing methods demonstrates that the presented algorithms are much more efficient in dealing with complex Petri net models while existing methods are not capable of handling such complicated models
    corecore