3,559 research outputs found

    Enhanced tidal stripping of satellites in the galactic halo from dark matter self-interactions

    Get PDF
    We investigate the effects of self-interacting dark matter (SIDM) on the tidal stripping and evaporation of satellite galaxies in a Milky Way-like host. We use a suite of five zoom-in, dark-matter-only simulations, two with velocity-independent SIDM cross sections, two with velocity-dependent SIDM cross sections, and one cold dark matter simulation for comparison. After carefully assigning stellar mass to satellites at infall, we find that stars are stripped at a higher rate in SIDM than in CDM. In contrast, the total bound dark matter mass loss rate is minimally affected, with subhalo evaporation having negligible effects on satellites for viable SIDM models. Centrally located stars in SIDM haloes disperse out to larger radii as cores grow. Consequently, the half-light radius of satellites increases, stars become more vulnerable to tidal stripping, and the stellar mass function is suppressed. We find that the ratio of core radius to tidal radius accurately predicts the relative strength of enhanced SIDM stellar stripping. Velocity-independent SIDM models show a modest increase in the stellar stripping effect with satellite mass, whereas velocity-dependent SIDM models show a large increase in this effect towards lower masses, making observations of ultra-faint dwarfs prime targets for distinguishing between and constraining SIDM models. Due to small cores in the largest satellites of velocity-dependent SIDM, no identifiable imprint is left on the all-sky properties of the stellar halo. While our results focus on SIDM, the main physical mechanism of enhanced tidal stripping of stars apply similarly to satellites with cores formed via other means.Comment: 19 pages, 18 figures, Accepted by MNRA

    GEO 600 and the GEO-HF upgrade program: successes and challenges

    Get PDF
    The German-British laser-interferometric gravitational wave detector GEO 600 is in its 14th year of operation since its first lock in 2001. After GEO 600 participated in science runs with other first-generation detectors, a program known as GEO-HF began in 2009. The goal was to improve the detector sensitivity at high frequencies, around 1 kHz and above, with technologically advanced yet minimally invasive upgrades. Simultaneously, the detector would record science quality data in between commissioning activities. As of early 2014, all of the planned upgrades have been carried out and sensitivity improvements of up to a factor of four at the high-frequency end of the observation band have been achieved. Besides science data collection, an experimental program is ongoing with the goal to further improve the sensitivity and evaluate future detector technologies. We summarize the results of the GEO-HF program to date and discuss its successes and challenges

    Cost-benefit analysis for commissioning decisions in GEO600

    Get PDF
    Gravitational wave interferometers are complex instruments, requiring years of commissioning to achieve the required sensitivities for the detection of gravitational waves, of order 10^-21 in dimensionless detector strain, in the tens of Hz to several kHz frequency band. Investigations carried out by the GEO600 detector characterisation group have shown that detector characterisation techniques are useful when planning for commissioning work. At the time of writing, GEO600 is the only large scale laser interferometer currently in operation running with a high duty factor, 70%, limited chiefly by the time spent commissioning the detector. The number of observable gravitational wave sources scales as the product of the volume of space to which the detector is sensitive and the observation time, so the goal of commissioning is to improve the detector sensitivity with the least possible detector down time. We demonstrate a method for increasing the number of sources observable by such a detector, by assessing the severity of non-astrophysical noise contaminations to efficiently guide commissioning. This method will be particularly useful in the early stages and during the initial science runs of the aLIGO and adVirgo detectors, as they are brought up to design performance.Comment: 17 pages, 17 figures, 2 table

    Characterization of thermal effects in the Enhanced LIGO Input Optics

    Get PDF
    We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO

    Gupta-Bleuler quantization for minimally coupled scalar fields in de Sitter space

    Get PDF
    We present in this paper a fully covariant quantization of the minimally-coupled massless field on de Sitter space. We thus obtain a formalism free of any infrared (e.g logarithmic) divergence. Our method is based on a rigorous group theoretical approach combined with a suitable adaptation (Krein spaces) of the Wightman-G\"{a}rding axiomatic for massless fields (Gupta-Bleuler scheme). We make explicit the correspondence between unitary irreducible representations of the de Sitter group and the field theory on de Sitter space-time. The minimally-coupled massless field is associated with a representation which is the lowest term of the discrete series of unitary representations of the de Sitter group. In spite of the presence of negative norm modes in the theory, no negative energy can be measured: expressions as \le n_{k_1}n_{k_2}...|T_{00}|n_{k_1}n_{k_2}...\re are always positive.Comment: 20 pages, appear in class. quantum gra

    Модуль фиксации и визуализации событий учебного онлайн-тренажера

    Get PDF
    В работе рассматривается проектирование и реализация универсальной базы данных с веб-интерфейсом для межплатформенной среды разработки компьютерных игр Unity. Разрабатываемая база данных позволит хранить сессию выполнения онлайн-тренажера, хранить историю выполнения заданий и оценки эффективности их прохождения. Веб-интерфейса предназначен для вывода оценок заданий для каждого студента по каждому онлайн-тренажеру, и реализации возможностей администрирования базы данных.In operation design and implementation of the universal database with the web interface for a cross-platform development environment of computer games of Unity is considered. The developed database will allow to store a session of execution of an online trainer, to store history of execution of jobs and assessment of efficiency of their passing. The web interface it is intended for an output of estimates of jobs for each student on each online trainer, and implementation of opportunities of administration of the database

    Comprehension as social and intellectual practice: Rebuilding curriculum in low socioeconomic and cultural minority schools

    Get PDF
    This article reframes the concept of comprehension as a social and intellectual practice. It reviews current approaches to reading instruction for linguistically and culturally diverse and low socioeconomic students, noting an emphasis on comprehension as autonomous skills. The Four Resources model (Freebody & Luke, 1990) is used to make the case for the integration of comprehension instruction with an emphasis on student cultural and community knowledge, and substantive intellectual and sociocultural content in elementary school curricula. Illustrations are drawn from research underway on the teaching of literacy in primary schools in low SES communities

    Non-Invasive Raman Tomographic Imaging of Canine Bone Tissue

    Get PDF
    Raman spectroscopic diffuse tomographic imaging has been demonstrated for the first time. It provides a noninvasive, label-free modality to image the chemical composition of human and animal tissue and other turbid media. This technique has been applied to image the composition of bone tissue within an intact section of a canine limb. Spatially distributed 785-nm laser excitation was employed to prevent thermal damage to the tissue. Diffuse emission tomography reconstruction was used, and the location that was recovered has been confirmed by micro-computed tomography (micro-CT) images. With recent advances, diffuse tomography shows promise for in vivo clinical imaging.1, 2 In principle, algorithms developed for fluorescence imaging in tissue can be applied to Raman signals. Although the Raman effect is weaker than fluorescence, the scattered signal is detectable, and thus tomography is achievable. Here we demonstrate the first diffuse tomography reconstructions based on Raman scatter. Raman mapping and imaging are well-established techniques for examining material surfaces.3 Subsurface mapping of simple planar objects was reported recently4, 5 using fiber optic probes with spatially separated injection and collection fibers.6 Noninvasive measurements of bone Raman spectra were demonstrated at depths of5mm role= presentation \u3e5mm below the skin.5 Bone is promising for Raman tomography because the spectra are rich in compositional information,7 which reflects bone maturity and health. Spectroscopically measured bone composition changes have been correlated with aging8 and susceptibility to osteoporotic fracture.9 The Raman spectrum of bone mineral is easily distinguished from the spectra of proteins and other organic tissue constituents, facilitating recovery of even weak signals by multivariate techniques. Assessments of bone quantity and quality are essential to detect and monitor fracture risk and fracture healing with disease or injury. Common sites for fracture with osteoporosis are the spine, proximal femur, and distal radius. Stress fractures are most frequently seen in the weight-bearing sites of the tibia and metatarsals. Fracture risk depends on bone geometry, architecture, and material properties, as well as the nature of applied load (magnitude, rate, and direction). As a result, noninvasive imaging and nondestructive analysis methods have been developed to assess many of these bone attributes that are increasingly important to clinical practice and basic research in orthopedics.10 Current clinical in vivo methods include dual-energy x-ray absorptiometry (DXA), quantitative computed tomography (QCT), magnetic resonance imaging (MRI), ultrasound, and most recently, high-resolution peripheral QCT. Ex vivo analyses of bone specimens from patients or animals have also utilized these and other techniques. In this study, we couple micro-computed tomography (micro-CT) and diffuse optical tomography with Raman spectroscopy to recover spatial and composition information from bone tissue ex vivo. We demonstrate the first reconstruction-based recovery of Raman signals through thick tissues to yield molecular information about subsurface bone tissue. Reconstructions from transcutaneous Raman measurements are challenging, because layers of skin, muscle, fat, and connective tissue lie over the bone sites of interest. These layers have different optical properties and thus variably scatter and polarize the injected light. We chose a canine model because of specimen availability and a bone size similar to human bone. We selected the tibia, a site that is clinically important and has relatively few overlying soft tissues. Measurements were made on the medial surface, where the only additional optical barrier is the crural extensor retinaculum ligament. The canine hind limb was harvested from an animal euthanized in an approved (UCUCA) University of Michigan study. The section of the limb distal to the knee was excised and scanned using in vivo micro-CT (eXplore Locus RS, GE Healthcare, Ontario, Canada). The tibia was scanned at80kV role= presentation \u3e80kV and 450μA role= presentation \u3e450μA with an exposure time of 100ms role= presentation \u3e100ms using a 360-deg scan technique. The image was reconstructed at a 93-μm role= presentation \u3e93-μm voxel resolution [Fig. 1a ]

    High-vacuum-compatible high-power Faraday isolators for gravitational-wave interferometers

    Get PDF
    Faraday isolators play a key role in the operation of large-scale gravitational-wave detectors. Second-generation gravitational-wave interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo will use high-average-power cw lasers (up to 200 W) requiring specially designed Faraday isolators that are immune to the effects resulting from the laser beam absorption–degraded isolation ratio, thermal lensing, and thermally induced beam steering. In this paper, we present a comprehensive study of Faraday isolators designed specifically for high-performance operation in high-power gravitational-wave interferometers
    corecore