78 research outputs found

    Should EOAD patients be included in clinical trials?

    Get PDF
    Alzheimer disease (AD) is a devastating neurodegenerative disease affecting 1 in 68 in the population. An arbitrary cutoff 65 years as the age of onset to distinguish between early- and late-onset AD has been proposed and has been used in the literature for decades. As the majority of patients develop AD after 65 years of age, most clinical trials address this population. While the early-onset cases represent only 1% to 6% of AD cases, this population is the active working subset and thus contributes to a higher public health burden per individual, and early-onset cases are the most devastating at the level of the individual and their families. In this review, we compare and contrast the clinical, neuropsychological, imaging, genetic, biomarker, and pathological features of these two arbitrary groups. Finally, we discuss the ethical dilemma of non-abandonment and justice as it pertains to exclusion of the early-onset AD patients from clinical trials

    Alzheimer’s disease progression by geographical region in a clinical trial setting

    Get PDF
    INTRODUCTION: To facilitate enrollment and meet local registration requirements, sponsors have increasingly implemented multi-national Alzheimer's disease (AD) studies. Geographic regions vary on many dimensions that may affect disease progression or its measurement. To aid researchers designing and implementing Phase 3 AD trials, we assessed disease progression across geographic regions using placebo data from four large, multi-national clinical trials of investigational compounds developed to target AD pathophysiology. METHODS: Four similarly-designed 76 to 80 week, randomized, double-blind placebo-controlled trials with nearly identical entry criteria enrolled patients aged ≥55 years with mild or moderate NINCDS/ADRDA probable AD. Descriptive analyses were performed for observed mean score and observed mean change in score from baseline at each scheduled visit. Data included in the analyses were pooled from the intent-to-treat placebo-assigned overall (mild and moderate) AD dementia populations from all four studies. Disease progression was assessed as change from baseline for each of 5 scales - the AD Assessment Scale-cognitive subscale (ADAS-cog11), the AD Cooperative Study- Activities of Daily Living Scale (ADCS-ADL), Mini-Mental State Examination (MMSE), the Clinical Dementia Rating scored by the sum of boxes method (CDR-SB), and the Neuropsychiatric Inventory (NPI). RESULTS: Regions were heterogeneous at baseline. At baseline, disease severity as measured by ADAS-cog11, ADCS-ADL, and CDR-SB was numerically worse for Eastern Europe/Russia compared with other regions. Of all regional populations, Eastern Europe/Russia showed the greatest cognitive and functional decline from baseline; Japan, Asia and/or S. America/Mexico showed the least cognitive and functional decline. CONCLUSIONS: These data suggest that in multi-national clinical trials, AD progression or its measurement may differ across geographic regions; this may be in part due to heterogeneity across populations at baseline. The observed differences in AD progression between outcome measures across geographic regions may generalize to 'real-world' clinic populations, where heterogeneity is the norm

    Genome-Wide Scan for Copy Number Variation Association with Age at Onset of Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is a progressive neurodegenerative disease with high prevalence, which imposes a substantial public health problem. The heritability of AD is estimated at 60–80% forecasting the potential use of genetic biomarkers for risk stratification in the future. Several large scale genome-wide association studies using high frequency variants identified 10 loci accountable for only a fraction of the estimated heritability. To find the missing heritability, systematic assessment of various mutational mechanisms needs to be performed. This copy number variation (CNV) genome-wide association study with age at onset (AAO) of AD identified 5 CNV regions that may contribute to the heritability of AAO of AD. Two CNV events are intragenic causing a deletion in CPNE4. In addition, to further study the mutational load at the 10 known susceptibility loci, CNVs overlapping with these loci were also catalogued. We identified rare small events overlapping CR1 and BIN1 in AD and normal controls with opposite CNV dosage. The CR1 events are consistent with previous reports. Larger scale studies with deeper genotyping specifically addressing CNV are needed to evaluate the significance of these findings

    A Blood-Based Screening Tool for Alzheimer's Disease That Spans Serum and Plasma: Findings from TARC and ADNI

    Get PDF
    There is no rapid and cost effective tool that can be implemented as a front-line screening tool for Alzheimer's disease (AD) at the population level.To generate and cross-validate a blood-based screener for AD that yields acceptable accuracy across both serum and plasma. status) data.Alzheimer's disease.11 proteins met our criteria and were utilized for the biomarker risk score. The random forest (RF) biomarker risk score from the TARC serum samples (training set) yielded adequate accuracy in the ADNI plasma sample (training set) (AUC = 0.70, sensitivity (SN) = 0.54 and specificity (SP) = 0.78), which was below that obtained from ADNI cerebral spinal fluid (CSF) analyses (t-tau/Aβ ratio AUC = 0.92). However, the full algorithm yielded excellent accuracy (AUC = 0.88, SN = 0.75, and SP = 0.91). The likelihood ratio of having AD based on a positive test finding (LR+) = 7.03 (SE = 1.17; 95% CI = 4.49–14.47), the likelihood ratio of not having AD based on the algorithm (LR−) = 3.55 (SE = 1.15; 2.22–5.71), and the odds ratio of AD were calculated in the ADNI cohort (OR) = 28.70 (1.55; 95% CI = 11.86–69.47).It is possible to create a blood-based screening algorithm that works across both serum and plasma that provides a comparable screening accuracy to that obtained from CSF analyses

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
    corecore